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Prompting

Train the model to generate language/code, then use -- without 
updating the model -- on other generation tasks.

def count_lines(__ filenameModel

def count_words(__ filenameModel

Freeze

Generation

Generation



Pre-train and Fine-Tune

First train on one task, then train on another

def count_lines(__ filenameModel

def count_lines( PythonModel

Initialize

Generation

Classification



Objectives: Autoregressive Language Modeling

count_  lines           (               filename

def        count_      lines                (

Unidirectional Transformer
(Decoder)

Outputs:

Inputs:
Used mostly for generation/prompting



Objectives: Masked Language Modeling

Bidirectional Transformer
(Encoder)

Used mostly for representation learning

def        count_      [MASK]    (

lines

Inputs:

Outputs:



Unidirectional vs Bidirectional Transformers

def        count_      lines                ( def        count_      [MASK]    (

linescount_  lines           (               filename

Unidirectional
Each token has info about previous.

Bidirectional
Each token has info about all others.



Objectives: Sequence-to-Sequence

Bidirectional Transformer
(Encoder)

“    Count    the    lines     in      the

count_  lines           (               filename

def        count_      lines                (

Unidirectional Transformer
(Decoder)

Used mostly for translation tasks, with fine-tuning.



Which Objective?

prompting/text generation

embeddings and classification (w/ fine-tuning)

Masked language modeling

Seq-to-seq de-noising

generation/translation (w/ fine-tuning)

Autoregressive language modeling



Autoregressive Generation



OpenAI GPT/GPT2

‣ GPT2: trained on 40GB of text

‣ By far the largest of these models trained when it came out in March 2019

Radford et al. (2019)

‣ Very large language models using the Transformer architecture

‣ Straightforward unidirectional decoder language model, trained on raw text

‣ Because it's a language model, we can generate from it

approximate size of BERT

GPT-2



Pushing the Limits: GPT-3

Brown et al. (2020)

‣ 175B parameter model: 96 layers, 96 heads, 12k-dim vectors

‣ Trained on 

Microsoft 

Azure, 

estimated to 

cost roughly 

$10M



Autoregressive Language Modeling for Code

▸Typically trained on lots of code from GitHub, often mixed with text 

▸Codex (Chen et al. 2021): OpenAI continues to train GPT-3 12B on 
160GB of Python data from GitHub

▸All GPT 3.5 models are trained on mixtures of code and text. 
https://platform.openai.com/docs/model-index-for-researchers

▸Many open-source models since then follow this recipe (PolyCoder, 
CodeGen, StarCoder)



Codex: “HumanEval” Benchmark
▸Evaluation: test case 

execution
▸164 hand-written 

examples
▸Why human-written?

▹ “It is important for these tasks to 
be hand-written, since our 
models are trained on a large 
fraction of GitHub, which already 
contains solutions to problems 
from a variety of sources. ”

▸Optimizing BLEU != 
Improving Functional 
Correctness 



Sampling-Based Evaluation

▸ Sampling more candidate functions dramatically increases chance of 
correctness

▸ pass@k: sample k candidate functions; see if any pass
▸Many ways of combining/using multiple candidates to help improve code 

correctness --- more in a future lecture!



Codex: Scaling Laws



Models Generate Good and Bad Code!



Stages of Training 
Autoregressive Models



Pre-Training vs Post-Training

▸Pre-training

▹Trillions of tokens. 

▹Primarily code files and web pages. 

▸Next token prediction objective

▹Model (potentially noisy) distribution of natural code

▹Bulk of knowledge learning happens here



Pre-Training vs Post-Training

▸Pre-trained models are more usable for raw code completion, 
but may still have issues

▹[overly diverse] The pre-trained model is a good model of 
the training distribution – but this includes low quality code!

▹[mode splitting] One of the highest-probability completions 
of a function under a pre-trained model is often
# TODO



Pre-Training vs Post-Training

▸Post-training

▹Hundreds of millions to billions of tokens

▹Instruction following and dialogue

▸System prompts, assistant/user structure

▹Specialize model to higher-quality outputs

▹May involve human-written data and supervision from 
human or verifier feedback (DPO, RL)



Pre-Training vs Post-Training

▸Post-training is where the model learns to follow instructions 
and format in a way that supports chat

https://cookbook.openai.com/articles/openai-harmony



Pre-Training vs Post-Training



“Mid-Training”

▸Somewhere in between pre-training and post-training in terms 
of data scale and quality

▸Examples: 

▹High quality GitHub repositories

▹GitHub Issues

▹Stack traces from executing code

▹Synthetically-generated data (more on this next week)



Masked Language Modeling

used more for pre-training + fine-tuning



CodeBERT: Masked Language Modeling Objective

Bidirectional Transformer

[CLS]          def        count_    [MASK]    …               [SEP]       Count the

lines

Code Docstring

Mask 15% of the tokens, randomly, and try to predict these masked tokens.



CodeBERT: Replaced Token Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish 
original tokens from replaced tokens.

Binary 
classification



CodeBERT: Pre-Training

▸125M parameter bidirectional encoder Transformer

▸Train on 2M documented functions (text & code) and 6M 
undocumented functions (code only) from GitHub (CodeSearchNet)



CodeBERT: Finetuning

Classification Tasks Generation Tasks

Parts of the task network are initialized with CodeBERT parameters.



CodeXGLUE Benchmark

Collection of tasks, largely with natural data mined from GitHub



CodeBERT: Results

▸Joint training on code and documentation > code alone

▸Initializing with a text-only model (RoBERTa) helps

Results for function/documentation matching (code retrieval)



CodeBERT: Results

▸Joint training on code and documentation > code alone

▸Initializing with a text-only model (RoBERTa) helps

Results for function-to-docstring generation



CodeBERT: Masked Prediction Probing



Filling-in-the-Middle



LLM Training Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None): 
""" Minimize a loss function using gradient.
Args:

build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

"""
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer 
minimize_op = tf.compat.v1.while_loop( 

cond=lambda step: step < num_steps, 
body=train_loop_body, 
loop_vars=[tf.constant(0)], return_same_structure=True)[0] 

return minimize_op

Masked Infilling
“Causal Masking” / 

Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+ 
2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix



Causal Masking / FIM Objective

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]



InCoder: Model Training

▸Training Data

▹600K permissively-licensed repositories 
from GitHub & GitLab. ~150GB total

▹StackOverflow: questions, answers, 
comments. ~50GB

▸Models

▹Unidirectional, decoder-only Transformer

▹1B model: ~1 week on 128 V100s

▹6B model: ~3 weeks on 240 V100s



Zero-Shot Software Tasks via Infilling



Evaluation

▸ Zero-shot evaluation on several software development-inspired code infilling tasks 
(we’ll show two).

▸ Compare the model in three different modes to evaluate benefits of suffix context

Left-to-Right Single Causal MaskingLeft-to-Right Rerank

Doesn’t use suffix Only uses suffix
when reranking

Uses suffix when 
generating

Baselines Ours



Evaluation: Function Completion

Constructed from HumanEval [Chen et al. 2021]

Fill in one or more lines of a function; evaluate with unit tests.



Function completion



Function completion



Evaluation: Docstring Generation

[CodeXGlue, Lu et al. 2021]



Evaluation: Return Type Prediction

[TypeWriter OSS, Pradel et al. 2020]



Evaluation



Ablations

▸StackOverflow data improves performance

▸Roughly comparable performance from infilling and non-
infilling models (but see Ben Allal et al. 2022 and Nijkamp et al. 
2023)



Other Infilling Code Models



Demo

Demo: huggingface.co/spaces/facebook/incoder-demo



Encoder-Decoder LMs

used for pre-train + fine-tune on generation tasks



How do we pre-train seq2seq models?

‣ LMs P(x): trained unidirectionally

‣ Masked LMs: trained bidirectionally but with masking

‣ How can we pre-train a model for P(y|x)?

‣ Well, why was BERT effective?

‣ Predicting a mask requires some kind of text “understanding”.

‣ What would it take to do the same for sequence prediction?

‣ Requirements: (1) should use unlabeled data; (2) should force a 

model to attend from y back to x



BART

Lewis et al. (2019)

Infilling is longer 

spans than masking

‣ Several possible strategies for corrupting a sequence are 

explored in the BART paper



BART

‣ Model & Objective: Sequence-to-sequence Transformer 

trained on this data: permute/make/delete tokens, then predict 

full sequence autoregressively

Lewis et al. (2019)

‣ Data: Same as RoBERTa; 160 GB of text



BERT vs. BART

‣ BERT: only parameters are an 

encoder, trained with masked 

language modeling objective. 

Cannot generate text or do seq2seq 

tasks

‣ BART: both an encoder and a 

decoder. Can also use just the 

encoder wherever we would use 

BERT

B D

A   _   C   _  E

Lewis et al. (2019)



T5: Text-to-Text Transfer Transformer

‣ Objective: similar denoising scheme to BART (they were released within a week of 

each other in fall 2019).

‣ Input: text with gaps. Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

‣ Lower computational cost compared to BART: predicts fewer tokens.



CodeT5: Objectives

Like code de-obfuscationLike T5

Pre-train like T5 (seq-to-seq denoising/masked span prediction), but add identifier-

specific objectives to learn code semantics.

Wang et al. (2021)



CodeT5: Training

▸Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#); 8.4M 
instances

▹60M and 220M parameter models, trained for 5 & 12 days 
on 16 GPUs.

▹Couldn’t initialize with T5, because T5’s tokenizer doesn’t 
preserve code-specific symbols like { and }. Train own 
tokenizer (more in a future class!)

▸Then, optionally do multi-task fine-tuning: train on multiple 
seq-to-seq tasks from CodeXGLUE simultaneously (translation, 
refinement, summarization, …).

Wang et al. (2021)



CodeT5: Analysis

▸All components of the objective help. MSP: masked span 
prediction. IT: identifier tagging. MIP: masked identifier 
prediction



CodeT5: Analysis

▸Multi-task fine-tuning sometimes helps and sometimes hurts, 
with some effects from task similarity.

Code translation and refinement results.



Hybrid Models



CodeT5+

▸Specializations of past approaches:

▹For translation: T5-like (seq-to-seq denoising) generally best

▹For generating new content: GPT-like (unidirectional 
decoder-only) generally best

▹For doc-level embeddings: BERT-like (MLM bidirectional 
encoder) generally best

▸CodeT5+: use a seq-to-seq model but train it with a progression 
of objectives, and pre-trained initializations

Wang et al. (2023)



CodeT5+: Overview

61

CodeT5+, https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2305.07922


CodeT5+: Supports downstream tasks

62



CodeT5+: Can operate in different modes

63



CodeT5+: Uses several pre-training tasks

64



CodeT5+: Has two pre-training stages

65



Stage 1: Code-only pre-training

Goal: Train model to recover code contexts at different scales 

Data: Code from GitHub

Tasks: 

▸ Span Denoising (15% masked tokens)

▸Causal LM 
▹ Partial programs

▹ Complete programs

66



Stage 2: Code and text pre-training

Goal: Train model for cross-modal understanding and generation 

Data: CodeSearchNet (Docstring & Code)

Tasks: 

▸Contrastive Learning (align feature space of code and text 
representation)

▸Text-Code Matching (predict if semantics match)

▸Text-Code Causal LM (text-to-code and code-to-text generation)

67



Code T5+: Architecture

Encoder: encodes contextual 
representations from either 
complete, partial or span-masked 
code/text sequences

Decoder: generates different 
outputs based on pretraining task

*S1: Stage1 and S2: Stage2

68



Code T5+: Compute-Efficient Training

● Shallow encoder and deep decoder, 
initialized with pretrained weights of a 
decoder code model (CodeGen, Nijkamp et 
al. 2023)

● Only encoder and cross attention layers are 
trainable

● Decoder weights are frozen



CodeT5+: Results

HumanEval code generation: slightly outperforms the CodeGen models it is 
initialized with



CodeT5+: Results

Code retrieval: outperforms CodeT5 and CodeBERT
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