
Code Pretraining
Daniel Fried

11-891: Neural Code Generation
https://cmu-codegen.github.io/f2025/

With slides from Greg Durrett, Nikitha Rao, and Zora Wang

Prompting

Train the model to generate language/code, then use -- without
updating the model -- on other generation tasks.

def count_lines(__ filenameModel

def count_words(__ filenameModel

Freeze

Generation

Generation

Pre-train and Fine-Tune

First train on one task, then train on another

def count_lines(__ filenameModel

def count_lines(PythonModel

Initialize

Generation

Classification

Objectives: Autoregressive Language Modeling

count_ lines (filename

def count_ lines (

Unidirectional Transformer
(Decoder)

Outputs:

Inputs:
Used mostly for generation/prompting

Objectives: Masked Language Modeling

Bidirectional Transformer
(Encoder)

Used mostly for representation learning

def count_ [MASK] (

lines

Inputs:

Outputs:

Unidirectional vs Bidirectional Transformers

def count_ lines (def count_ [MASK] (

linescount_ lines (filename

Unidirectional
Each token has info about previous.

Bidirectional
Each token has info about all others.

Objectives: Sequence-to-Sequence

Bidirectional Transformer
(Encoder)

“ Count the lines in the

count_ lines (filename

def count_ lines (

Unidirectional Transformer
(Decoder)

Used mostly for translation tasks, with fine-tuning.

Which Objective?

prompting/text generation

embeddings and classification (w/ fine-tuning)

Masked language modeling

Seq-to-seq de-noising

generation/translation (w/ fine-tuning)

Autoregressive language modeling

Autoregressive Generation

OpenAI GPT/GPT2

‣ GPT2: trained on 40GB of text

‣ By far the largest of these models trained when it came out in March 2019

Radford et al. (2019)

‣ Very large language models using the Transformer architecture

‣ Straightforward unidirectional decoder language model, trained on raw text

‣ Because it's a language model, we can generate from it

approximate size of BERT

GPT-2

Pushing the Limits: GPT-3

Brown et al. (2020)

‣ 175B parameter model: 96 layers, 96 heads, 12k-dim vectors

‣ Trained on

Microsoft

Azure,

estimated to

cost roughly

$10M

Autoregressive Language Modeling for Code

▸Typically trained on lots of code from GitHub, often mixed with text

▸Codex (Chen et al. 2021): OpenAI continues to train GPT-3 12B on
160GB of Python data from GitHub

▸All GPT 3.5 models are trained on mixtures of code and text.
https://platform.openai.com/docs/model-index-for-researchers

▸Many open-source models since then follow this recipe (PolyCoder,
CodeGen, StarCoder)

Codex: “HumanEval” Benchmark
▸Evaluation: test case

execution
▸164 hand-written

examples
▸Why human-written?

▹ “It is important for these tasks to
be hand-written, since our
models are trained on a large
fraction of GitHub, which already
contains solutions to problems
from a variety of sources. ”

▸Optimizing BLEU !=
Improving Functional
Correctness

Sampling-Based Evaluation

▸ Sampling more candidate functions dramatically increases chance of
correctness

▸ pass@k: sample k candidate functions; see if any pass
▸Many ways of combining/using multiple candidates to help improve code

correctness --- more in a future lecture!

Codex: Scaling Laws

Models Generate Good and Bad Code!

Stages of Training
Autoregressive Models

Pre-Training vs Post-Training

▸Pre-training

▹Trillions of tokens.

▹Primarily code files and web pages.

▸Next token prediction objective

▹Model (potentially noisy) distribution of natural code

▹Bulk of knowledge learning happens here

Pre-Training vs Post-Training

▸Pre-trained models are more usable for raw code completion,
but may still have issues

▹[overly diverse] The pre-trained model is a good model of
the training distribution – but this includes low quality code!

▹[mode splitting] One of the highest-probability completions
of a function under a pre-trained model is often
TODO

Pre-Training vs Post-Training

▸Post-training

▹Hundreds of millions to billions of tokens

▹Instruction following and dialogue

▸System prompts, assistant/user structure

▹Specialize model to higher-quality outputs

▹May involve human-written data and supervision from
human or verifier feedback (DPO, RL)

Pre-Training vs Post-Training

▸Post-training is where the model learns to follow instructions
and format in a way that supports chat

https://cookbook.openai.com/articles/openai-harmony

Pre-Training vs Post-Training

“Mid-Training”

▸Somewhere in between pre-training and post-training in terms
of data scale and quality

▸Examples:

▹High quality GitHub repositories

▹GitHub Issues

▹Stack traces from executing code

▹Synthetically-generated data (more on this next week)

Masked Language Modeling

used more for pre-training + fine-tuning

CodeBERT: Masked Language Modeling Objective

Bidirectional Transformer

[CLS] def count_ [MASK] … [SEP] Count the

lines

Code Docstring

Mask 15% of the tokens, randomly, and try to predict these masked tokens.

CodeBERT: Replaced Token Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish
original tokens from replaced tokens.

Binary
classification

CodeBERT: Pre-Training

▸125M parameter bidirectional encoder Transformer

▸Train on 2M documented functions (text & code) and 6M
undocumented functions (code only) from GitHub (CodeSearchNet)

CodeBERT: Finetuning

Classification Tasks Generation Tasks

Parts of the task network are initialized with CodeBERT parameters.

CodeXGLUE Benchmark

Collection of tasks, largely with natural data mined from GitHub

CodeBERT: Results

▸Joint training on code and documentation > code alone

▸Initializing with a text-only model (RoBERTa) helps

Results for function/documentation matching (code retrieval)

CodeBERT: Results

▸Joint training on code and documentation > code alone

▸Initializing with a text-only model (RoBERTa) helps

Results for function-to-docstring generation

CodeBERT: Masked Prediction Probing

Filling-in-the-Middle

LLM Training Objectives

“Causal” (L-to-R)

def minimize_in_graph(build_loss_fn, num_steps=200, optimizer=None):
""" Minimize a loss function using gradient.
Args:

build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

"""
optimizer = tf.compat.v1.train.AdamOptimizer(0.1) if optimizer is None else optimizer
minimize_op = tf.compat.v1.while_loop(

cond=lambda step: step < num_steps,
body=train_loop_body,
loop_vars=[tf.constant(0)], return_same_structure=True)[0]

return minimize_op

Masked Infilling
“Causal Masking” /

Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+
2022, ours, Bavarian+ 2022]

[e.g. BERT, CodeBERT][e.g. GPT-*, Codex]

Prefix

Target

Suffix

Causal Masking / FIM Objective

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]

InCoder: Model Training

▸Training Data

▹600K permissively-licensed repositories
from GitHub & GitLab. ~150GB total

▹StackOverflow: questions, answers,
comments. ~50GB

▸Models

▹Unidirectional, decoder-only Transformer

▹1B model: ~1 week on 128 V100s

▹6B model: ~3 weeks on 240 V100s

Zero-Shot Software Tasks via Infilling

Evaluation

▸ Zero-shot evaluation on several software development-inspired code infilling tasks
(we’ll show two).

▸ Compare the model in three different modes to evaluate benefits of suffix context

Left-to-Right Single Causal MaskingLeft-to-Right Rerank

Doesn’t use suffix Only uses suffix
when reranking

Uses suffix when
generating

Baselines Ours

Evaluation: Function Completion

Constructed from HumanEval [Chen et al. 2021]

Fill in one or more lines of a function; evaluate with unit tests.

Function completion

Function completion

Evaluation: Docstring Generation

[CodeXGlue, Lu et al. 2021]

Evaluation: Return Type Prediction

[TypeWriter OSS, Pradel et al. 2020]

Evaluation

Ablations

▸StackOverflow data improves performance

▸Roughly comparable performance from infilling and non-
infilling models (but see Ben Allal et al. 2022 and Nijkamp et al.
2023)

Other Infilling Code Models

Demo

Demo: huggingface.co/spaces/facebook/incoder-demo

Encoder-Decoder LMs

used for pre-train + fine-tune on generation tasks

How do we pre-train seq2seq models?

‣ LMs P(x): trained unidirectionally

‣ Masked LMs: trained bidirectionally but with masking

‣ How can we pre-train a model for P(y|x)?

‣ Well, why was BERT effective?

‣ Predicting a mask requires some kind of text “understanding”.

‣ What would it take to do the same for sequence prediction?

‣ Requirements: (1) should use unlabeled data; (2) should force a

model to attend from y back to x

BART

Lewis et al. (2019)

Infilling is longer

spans than masking

‣ Several possible strategies for corrupting a sequence are

explored in the BART paper

BART

‣ Model & Objective: Sequence-to-sequence Transformer

trained on this data: permute/make/delete tokens, then predict

full sequence autoregressively

Lewis et al. (2019)

‣ Data: Same as RoBERTa; 160 GB of text

BERT vs. BART

‣ BERT: only parameters are an

encoder, trained with masked

language modeling objective.

Cannot generate text or do seq2seq

tasks

‣ BART: both an encoder and a

decoder. Can also use just the

encoder wherever we would use

BERT

B D

A _ C _ E

Lewis et al. (2019)

T5: Text-to-Text Transfer Transformer

‣ Objective: similar denoising scheme to BART (they were released within a week of

each other in fall 2019).

‣ Input: text with gaps. Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

‣ Lower computational cost compared to BART: predicts fewer tokens.

CodeT5: Objectives

Like code de-obfuscationLike T5

Pre-train like T5 (seq-to-seq denoising/masked span prediction), but add identifier-

specific objectives to learn code semantics.

Wang et al. (2021)

CodeT5: Training

▸Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#); 8.4M
instances

▹60M and 220M parameter models, trained for 5 & 12 days
on 16 GPUs.

▹Couldn’t initialize with T5, because T5’s tokenizer doesn’t
preserve code-specific symbols like { and }. Train own
tokenizer (more in a future class!)

▸Then, optionally do multi-task fine-tuning: train on multiple
seq-to-seq tasks from CodeXGLUE simultaneously (translation,
refinement, summarization, …).

Wang et al. (2021)

CodeT5: Analysis

▸All components of the objective help. MSP: masked span
prediction. IT: identifier tagging. MIP: masked identifier
prediction

CodeT5: Analysis

▸Multi-task fine-tuning sometimes helps and sometimes hurts,
with some effects from task similarity.

Code translation and refinement results.

Hybrid Models

CodeT5+

▸Specializations of past approaches:

▹For translation: T5-like (seq-to-seq denoising) generally best

▹For generating new content: GPT-like (unidirectional
decoder-only) generally best

▹For doc-level embeddings: BERT-like (MLM bidirectional
encoder) generally best

▸CodeT5+: use a seq-to-seq model but train it with a progression
of objectives, and pre-trained initializations

Wang et al. (2023)

CodeT5+: Overview

61

CodeT5+, https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2305.07922

CodeT5+: Supports downstream tasks

62

CodeT5+: Can operate in different modes

63

CodeT5+: Uses several pre-training tasks

64

CodeT5+: Has two pre-training stages

65

Stage 1: Code-only pre-training

Goal: Train model to recover code contexts at different scales

Data: Code from GitHub

Tasks:

▸ Span Denoising (15% masked tokens)

▸Causal LM
▹ Partial programs

▹ Complete programs

66

Stage 2: Code and text pre-training

Goal: Train model for cross-modal understanding and generation

Data: CodeSearchNet (Docstring & Code)

Tasks:

▸Contrastive Learning (align feature space of code and text
representation)

▸Text-Code Matching (predict if semantics match)

▸Text-Code Causal LM (text-to-code and code-to-text generation)

67

Code T5+: Architecture

Encoder: encodes contextual
representations from either
complete, partial or span-masked
code/text sequences

Decoder: generates different
outputs based on pretraining task

*S1: Stage1 and S2: Stage2

68

Code T5+: Compute-Efficient Training

● Shallow encoder and deep decoder,
initialized with pretrained weights of a
decoder code model (CodeGen, Nijkamp et
al. 2023)

● Only encoder and cross attention layers are
trainable

● Decoder weights are frozen

CodeT5+: Results

HumanEval code generation: slightly outperforms the CodeGen models it is
initialized with

CodeT5+: Results

Code retrieval: outperforms CodeT5 and CodeBERT

	Slide 1: Code Pretraining
	Slide 2: Prompting
	Slide 3: Pre-train and Fine-Tune
	Slide 4: Objectives: Autoregressive Language Modeling
	Slide 5: Objectives: Masked Language Modeling
	Slide 6: Unidirectional vs Bidirectional Transformers
	Slide 7: Objectives: Sequence-to-Sequence
	Slide 8: Which Objective?
	Slide 9: Autoregressive Generation
	Slide 10: OpenAI GPT/GPT2
	Slide 11: Pushing the Limits: GPT-3
	Slide 12: Autoregressive Language Modeling for Code
	Slide 13: Codex: “HumanEval” Benchmark
	Slide 14: Sampling-Based Evaluation
	Slide 15: Codex: Scaling Laws
	Slide 16: Models Generate Good and Bad Code!
	Slide 17: Stages of Training Autoregressive Models
	Slide 18: Pre-Training vs Post-Training
	Slide 19: Pre-Training vs Post-Training
	Slide 20: Pre-Training vs Post-Training
	Slide 21: Pre-Training vs Post-Training
	Slide 22: Pre-Training vs Post-Training
	Slide 23: “Mid-Training”
	Slide 24: Masked Language Modeling
	Slide 25: CodeBERT: Masked Language Modeling Objective
	Slide 26: CodeBERT: Replaced Token Detection Objective
	Slide 27: CodeBERT: Pre-Training
	Slide 28: CodeBERT: Finetuning
	Slide 29: CodeXGLUE Benchmark
	Slide 30: CodeBERT: Results
	Slide 31: CodeBERT: Results
	Slide 32: CodeBERT: Masked Prediction Probing
	Slide 33: Filling-in-the-Middle
	Slide 34: LLM Training Objectives
	Slide 35: Causal Masking / FIM Objective
	Slide 36: InCoder: Model Training
	Slide 38: Zero-Shot Software Tasks via Infilling
	Slide 39: Evaluation
	Slide 40: Evaluation: Function Completion
	Slide 41: Function completion
	Slide 42: Function completion
	Slide 43: Evaluation: Docstring Generation
	Slide 44: Evaluation: Return Type Prediction
	Slide 45: Evaluation
	Slide 46: Ablations
	Slide 47: Other Infilling Code Models
	Slide 48: Demo
	Slide 49: Encoder-Decoder LMs
	Slide 50: How do we pre-train seq2seq models?
	Slide 51: BART
	Slide 52: BART
	Slide 53: BERT vs. BART
	Slide 54: T5: Text-to-Text Transfer Transformer
	Slide 55: CodeT5: Objectives
	Slide 56: CodeT5: Training
	Slide 57: CodeT5: Analysis
	Slide 58: CodeT5: Analysis
	Slide 59: Hybrid Models
	Slide 60: CodeT5+
	Slide 61: CodeT5+: Overview
	Slide 62: CodeT5+: Supports downstream tasks
	Slide 63: CodeT5+: Can operate in different modes
	Slide 64: CodeT5+: Uses several pre-training tasks
	Slide 65: CodeT5+: Has two pre-training stages
	Slide 66: Stage 1: Code-only pre-training
	Slide 67: Stage 2: Code and text pre-training
	Slide 68: Code T5+: Architecture
	Slide 69: Code T5+: Compute-Efficient Training
	Slide 70: CodeT5+: Results
	Slide 71: CodeT5+: Results

