Code Pretraining

Daniel Fried
11-891: Neural Code Generation
https://cmu-codegen.github.io/f2025/

Language
Technologies
Institute

With slides from Greg Durrett, Nikitha Rao, and Zora Wang

Prompting

Train the model to generate language/code, then use -- without
updating the model -- on other generation tasks.

Generation def count_lines(__ { Model]» ——» filename

Freeze

v
Generation def count_words(___ { Model]- __. filename

Pre-train and Fine-Tune

First train on one task, then train on another

Generation

Classification

def count_lines(_ { Model]‘ ——*

. Initialize

v
, BIDR
def count_lines({ Model]- -—>

filename

Python

Objectives: Autoregressive Language Modeling

| X|
P(X) — Hp(x?l|xla"'a$i—1)
=1

Outputs: count_ lines (filename

i 4

[Unidirectional Transformer

(Decoder)
Inputs: def count_ lines (

Used mostly for generation/prompting

Objectives: Masked Language Modeling

| X |
P(X) # || P(zilaws:)
=1
Outputs: é é /ig’s
Bidirectional Transformer
(Encoder)
Inputs: d cot_ [SK] (

Used mostly for representation learning

Unidirectional vs Bidirectional Transformers

Unidirectional
Each token has info about previous.
count lines (filename
;- 3 B &
> >4 >~
[t t t t]
2 3 B &
> 4 > <
- 3 B 2
:
def count lines (

Bidirectional
Each token has info about all others.
lines
e, |

> < > 4 > < >
> > 4 > 4 >
| —-_— h .

d count_ [MSK]

Objectives: Sequence-to-Sequence

Y]
P(Y|X) =] PwilX,v1,- -, i-1)
1=1
count_ lines (filename
Bidirectional Transformer i Unidirectional Transformer
(Encoder) . (Decoder)
“ Count the lines in the def count lines (

Used mostly for translation tasks, with fine-tuning.

Which Objective?

Autoregressive language modeling BOO0O000
i Ea

P(X) =] P@ilz1,...,zi-1) T
pai EEEE]

EEEEET

prompting/text generation

Masked language modeling
| X|

P(X) # HP(%L’U#’)

embeddings and classification (w/ fine-tuning)

Seq-to-seq de-noising EEEEEN

Y|
P(Y|X) — HP(yZ|X7y17 <. 7y7l—1)

=1

' generation/translation (w/ fine-tuning)

Autoregressive Generation

| X|
P(X) = HP($i|$1,---a$z‘—1)
i=1

OpenAl GPT/GPT2

~ Very large language models using the Transformer architecture

» Straightforward unidirectional decoder language model, trained on raw text

» GPT2: trained on 40GB of text

Parameters Layers dmodel

117M 12 768

approximate size of BERT345M 24 1024
T762M 36 1280

GPT-2 1542M 48 1600

>~ By far the largest of these models trained when it came out in March 2019

- Because it's a language model, we can generate from it
Radford et al. (2019)

>

Pushing the Limits: GPT-3

175B parameter model: 96 layers, 96 heads, 12k-dim vectors
Total Compute Used During Training

:b
o

Trained on
Microsoft
Azure,
estimated to
cost roughly
$10M

Training Petaflop/s-days

10000

1000

100

1.I
€§

°.>

Brown et al. (2020)

Autoregressive Language Modeling for Code

» Typically trained on lots of code from GitHub, often mixed with text

> Codex (Chen et al. 2021): OpenAl continues to train GPT-3 12B on
160GB of Python data from GitHub

» All GPT 3.5 models are trained on mixtures of code and text.

https://platform.openai.com/docs/model-index-for-researchers

» Many open-source models since then follow this recipe (PolyCoder,
CodeGen, StarCoder)

III

Codex: “HumanEval” Benchmark

» Evaluation: test case

exeCUtlon . Sulﬂflﬁﬂiisfithﬂ list of integers, return the sum of all of the odd elements
> 164 hand-written that are In even positions.

examples oloeion(CS, 8, 7, 11) =512
» Why human-written? o lutionise, 13 24, 391D o

> “Itis important for these tasks to return sum(lst[i] for i in range(@,len(lst)) if i % 2 == @ and 1st[i] % 2 == 1)
be hand-written, since our
models are trained on a large

fraction of GitHub, which already HumanEval/4 HumanEval/21

contains solutions to problems 5. = correct | mm correct

from a variety of sources. ” w—_wrong || == s wrong
7.5 -

> Optimizing BLEU != a

Improving Functional 1- 25
Correctness oL 0.0 M
0.00 0.25 050 0.75 0.00 0.25 050 0.75

BLEU score

Sampling-Based Evaluation

Sample Ranking Heuristics

- QOracle
0.7 4 —— Docstring backtranslation
—— Sum logp
—— Mean logp
0.6 1 — Random

0.5 +

Pass rate

0.4

0.3 =

0.2

L | v . L LY | v " LI LD |
109 10 102
Number of samples (k)

» Sampling more candidate tunctions dramatically increases chance of
correctness

» pass@k: sample k candidate functions; see if any pass

> Many ways of combining/using multiple candidates to help improve code
correctness --- more in a future lecture!

Codex: Scaling Laws

Codex Loss Scaling Pass Rate vs Model Size
(L N__)-013 0.7 4 — pass@1 (T*=0.2)
2 x 10° - 5.92e+07 —— pass@100 (T*=0.8)
0.6
0.5 +
0 N
S © 0.4 -
o 10° @
@ ' LS 0.3 1
} 0.2 A
6 x 1071 -
0.1 -+
LA | L | LAY | L | LR | L ' 00 -.n.l T T T T T T T T T T T ™T T TTTTT
105 106 107 108 109 1010 105 106 107 108 109

Non-embedding parameters Non-embedding parameters

Models Generate Good and Bad Code!

Model Performance With/Without Subtle Bugs in Context
0.30 A

- Correct examples in context
0.25 - Examples with subtle bugs in context
No examples in context

0.20 -+
0.15 H
0.10 H

0.05 H

pass@1 (Fraction Correct)

0.00 -

bR | L | L | L L
10° 107 108 10° 1010
Non-embedding Parameters

Figure 12. When the prompt includes subtle bugs, Codex tends to
produce worse code than it is capable of. This persists when the
prompt also includes instructions to write correct code. This gap
increases with model size.

Stages of Training
Autoregressive Models

Pre-Training vs Post-Training

> Pre-training
> Trillions of tokens.
> Primarily code files and web pages.
> Next token prediction objective
> Model (potentially noisy) distribution of natural code
> Bulk of knowledge learning happens here

Pre-Training vs Post-Training

> Pre-trained models are more usable for raw code completion,
but may still have issues

> [overly diverse] The pre-trained model is a good model of
the training distribution — but this includes low quality code!

> [mode splitting] One of the highest-probability completions
of a function under a pre-trained model is often
TODO

Pre-Training vs Post-Training

> Post-training
> Hundreds of millions to billions of tokens
> [nstruction following and dialogue
» System prompts, assistant/user structure
> Specialize model to higher-quality outputs

> May involve human-written data and supervision from
human or verifier feedback (DPO, RL)

Pre-Training vs Post-Training

» Post-training is where the model learns to follow instructions
and format in a way that supports chat

Example output

<|channel|>analysis<|message|>User asks: '"What is 2 + 2?" Simple arithmetic. Provide answer.4|endﬁﬁ

<|start|>assistant<|channel|>final<|message|>2 + 2 = 4.<|return|>

https://cookbook.openai.com/articles/openai-harmony

Pre-Training vs Post-Training

| File-Level Pretrain | Alignment
Qwen2.5 Y T SE;;T.-OI(L 3 Qwen2.5-Coder . Ead Qwen2.5-Code-Instruct

@
Figure 2: The three-stage training pipeline for Qwen2.5-Coder.

CopE LLaMA

Long context (7B <2, 13B <2, 34B)
» fine-tuning —
. Instruction
LrAmA 2 Code training 20B | . Finetming _, COPELLAMA-INsTRUCT
Foundation models — Infilling code training = — (7B =2, 13B =2, 34B)
5B
(7B, 13B, 34B) 500B Python code Long context L P
L+~ training ~ Fine-tuning , Copg LrAMA - PYTHON
(7B, 13B, 34B)
100B 20B

Figure 2: The Code Llama specialization pipeline. The different stages of fine-tuning annotated with
the number of tokens seen during training. Infilling-capable models are marked with the & symbol.

“Mid-Training”

» Somewhere in between pre-training and post-training in terms
of data scale and quality

> Examples:
> High quality GitHub repositories
> GitHub Issues
> Stack traces from executing code
> Synthetically-generated data (more on this next week)

Masked Language Modeling

| X

P(X) # [P(aide)

used more for pre-training + fine-tuning

CodeBERT: Masked Language Modeling Objective

Mask 15% of the tokens, randomly, and try to predict these masked tokens.

. ‘CMLM (9) = Z —lo g pD 1 (x; ’,u‘,maSked’ Cmasked)
lines iIEM®YUme

. y - r - - Y N
> 4 | > < | > < > 4
> 4 > > > > > 4
_— | _— - | _— _ A

Bidirectional Transformer

- - - g - - — —
> < > < > < > < > > > <
> < > > > >~ > < A
| -_— — - L [— L-— b

l[CLS] def count [MASK] ' [SEP] . Count the
Y ¥
Code

Docstring

CodeBERT: Replaced Token Detection Objective

Rather than masked tokens, use tokens replaced by (weaker) LMs, and distinguish
original tokens from replaced tokens.

sample
wy — [MASK], ——™ —————= > Wgy ————————» — replaced
Wy —— > W, w, > —— original
w3 — W3 NL Generator W3 > —» original
" > — original
Wa Wa sample W 8
ws — [MASK]y, —™ ————== > ws > — original
Binary
NL-Code . .
Discriminator classification
G — sample C1 > — original
¢, — [MASK], — —————- > Cy9 > — replaced
C3 — * C3 C3 > — original
Code Generator o
Cpb —> (4 Cy > — original
g — (5 sample Cs > — original
¢ — |MASK|, — ————— = (162 > — replaced

CodeBERT: Pre-Training

» 125M parameter bidirectional encoder Transformer

> Train on 2M documented functions (text & code) and 6M
undocumented functions (code only) from GitHub (CodeSearchNet)

TRAINING DATA bimodal DATA unimodal CODES

Go 319,256 726,768
JAVA 500,754 1,569,889
JAVASCRIPT 143,252 1,857,835
PHP 662,907 977,821
PYTHON 458,219 1,156,085
RUBY 52,905 164,048

ALL 2,137,293 6,452,446

CodeBERT: Finetuning

Parts of the task network are initialized with CodeBERT parameters.

Classification Tasks

Input tokens

[CLS] text/code [SEP] code [SEP]

I T T

CodeBERT
|
y
[FFNN + Softmax J
'

0 |m
7 | Category distribution

Supported tasks:
* code search
» code clone detection

Generation Tasks

Input code

l

CodeBERT
as Encoder

!

Decoder

i

Output code

Supported tasks:
* code repair
* code translation

CodeXGLUE Benchmark

Collection of tasks, largely with natural data mined from GitHub

Category Task Dataset Name Language Train/Dev/Test Size Baselines
Clone Detection BigCloneBench [71] Java 900K/416K/416K
POJ-104 [52] C/C++ 32K/8K/12K
Defect Detection Devign [99] - C - 21K/2.7K/2.7K CodeBERT
CT-all ython] Rebu -/-/176K
Cloze Test JavaScript,Ruby,Go
. Python,Java,PHP,
CT-max/min [18] . -/-/2.6K
Code-Code JavaScript,Ruby,Go
. PY150 [62] Python 100K/5K/50K
1
Code Completion Github Java Corpus[4] Java 13K/7K/8K CodeGPT
Code Repair Bugs2Fix [75] Java 98K/12K/12K Encoder-
Code Translation CodeTrans Java-C# 10K/0.5K/1K Decoder
COdeSZZI:g? (351, Python 251K/9.6K/19K
NL Code Search
R CodeSearchNet [35], Python 251K/9.6K/1K CodeBERT
Text-Code WebQueryTest e ‘
Té’:nzaflgie CONCODE [38] Java 100K/2K/2K CodeGPT
Code-Text Code Summarization = CodeSearchNet [35] PythOI?Java,PHP, 908K /45K /53K
JavaScript,Ruby,Go Encoder-
Documentation : English-Latvian/Danish Decoder
Text-Text Translation Microsoft Docs /Norwegian/Chinese 156K/4K/4K

CodeBERT: Results

» Joint training on code and documentation > code alone

> [nitializing with a text-only model (RoBERTa) helps

MODEL RUBY JAVASCRIPT GO PYTHON JAVA PHP MA-AVG
ROBERTA 0.6245 0.6060 0.8204 0.8087 0.6659 0.6576 0.6972
PT w/ CODE ONLY (INIT=S) 0.5712 0.5557 0.7929 0.7855 0.6567 0.6172 0.6632
PT w/ CODE ONLY (INIT=R) 0.6612 0.6402 0.8191 0.8438 0.7213 0.6706 0.7260
CODEBERT (MLM, INIT=S) 0.5695 0.6029 0.8304 0.8261 0.7142 0.6556 0.6998
COoDEBERT (MLM, INIT=R) 0.6898 0.6997 0.8383 0.8647 0.7476 0.6893 0.7549
CoDEBERT (RTD, INIT=R) 0.6414 0.6512 0.8285 0.8263 0.7150 0.6774 0.7233
CODEBERT (MLM+RTD, INIT=R) 0.6926 0.7059 0.8400 0.8685 0.7484 0.7062 0.7603

Results for function/documentation matching (code retrieval)

CodeBERT: Results

» Joint training on code and documentation > code alone

> [nitializing with a text-only model (RoBERTa) helps

MODEL RUBY JAVASCRIPT GO PYTHON JAVA PHP OVERALL
SEQ2SEQ 9.64 10.21 13.98 15.93 15.09 21.08 14.32
TRANSFORMER 11.18 11.59 16.38 15.81 16.26 22.12 15.56
ROBERTA 11.17 11.90 17.72 18.14 16.47 24.02 16.57
PRE-TRAIN W/ CODE ONLY 11.91 13.99 17.78 18.58 17.50 24.34 17.35
COoDEBERT (RTD) 11.42 13.27 17.53 18.29 17.35 24.10 17.00
CODEBERT (MLM) 11.57 14.41 17.78 18.77 17.38 24.85 17.46
CODEBERT (RTD+MLM) 12.16 14.90 18.07 19.06 17.65 25.16 17.83

Results for function-to-docstring generation

CodeBERT: Masked Prediction

Probing

masked NL token

"Transforms a vector np.arange(-N, M, dx) to np.arange(@](|vec]),
max(N,M),dx)]"

def vec_to_halfvec(vec):

d =vec[1:] - vec[:-1]
if ((d/d.mean()).std() > 1e-14) or (d.mean() < 0):
raise ValueError('vec must be np.arange() in increasing order')

dx = d.mean() masked PL token
lowest = np.a bs(vec).

highest = np.abs(vec).max()
return np.arange(lowest, highest + 0.1*dx, dx).astype(vec.dtype)

max min less greater
Roberta 96.24% 3.73% 0.02% 0.01%
N CodeBERT (MLM) | 39.38% 60.60% 0.02% 0.0003%
oL Roberta 95.85% 4.15% - -
CodeBERT (MLM) | 0.001% 99.999% o 5

Figure 3: Case study on python language. Masked to-
kens in NL (in blue) and PL (in yellow) are separately
applied. Predicted probabilities of ROBERTa and Code-

BERT are given.

Filling-in-the-Middle

LLM Training Objectives

def minimize in graph(build loss fn. hum steps=200. optimizer=None):

Prefix

""" Minimize a loss function using gradient.

Args:
build_loss_fn: a function that returns a loss tensor for a mini-batch of examples.
num_steps: number of gradient descent steps to perform.
optimizer: an optimizer to use when minimizing the loss function. If None, will use Adam

Target

optimizer = tf.compat.vl.train.AdamOptimizer(0.1) if optimizer is None else optimizer
minimize_op = tf.compat.v1l.while_loop(

cond=lambda step: step < num_steps,

body=train_loop_body,

loop_vars=[tf.constant(0)], return_same_structure=True)[0]
return minimize_op

Suffix

“Causal” (L-to-R) Masked Infilling

[e.g. GPT-*, Codex] [e.g. BERT, CodeBERT]

“Causal Masking” /
Fill-in-the-Middle (FIM)

[Donahue+ 2020, Aghajanyan+
2022, ours, Bavarian+ 2022]

Causal Masking / FIM Objective

Training

Original Document

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word _counts:
word_counts[word] += 1
else:
word counts[word] = 1
return word_counts

[Donahue et al. 2020, Aghajanyan et al. 2022, Fried et al. 2022, Bavarian et al. 2022]

InCoder: Model Training

9]
o

> Training Data

@ 40
> 600K permissively-licensed repositories §30
from GitHub & GitLab. ~150GB total
> StackOverflow: questions, answers, o | LT
comments. “50GB °iQ§_z%§§ma;;_
> Models :
> Unidirectional, decoder-only Transformer @12
> 1B model: ~1 week on 128 V100s %14-
> 6B model: ~3 weeks on 240 V100s ”gfiz
;-

I I I I I
0.2 0.4 0.6 0.8 1.0
Fraction of Training Data Seen

Zero-Shot Software Tasks via Infilling

Zero-shot Inference

Docstring Generation Multi-Region Infilling

def count_words(filename: str) -> Dict[str, int]: from collections import Counter

W

def word_count(file_name):

Counts the number of occurrences of each word in the given file.
"""Count the number of occurrences of each word in the file."""

words = []
with open(file_name) as file:
for line in file:
words.append(line.strip())

return Counter (words)

:param filename: The name of the file to count.
:return: A dictionary mapping words to the number of occurrences.

mun

with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word counts[word] += 1
else:
word _counts[word] =1

return word_counts

Evaluation

» Zero-shot evaluation on several software development-inspired code infilling tasks
(we’ll show two).

» Compare the model in three different modes to evaluate benefits of suffix context

Baselines Ours
Left-to-Right Single Left-to-Right Rerank Causal Masking
Doesn’t use suffix Only uses suffix Uses suffix when

when reranking generating

Evaluation: Function Completion

Fill in one or more lines of a function; evaluate with unit tests.

from typing import List
def has_close_elements{numbers: List[fleocat], threshold: float) -> bool:

Check if in given list of numbers, are any two numbers closer to each other
than given threshold.

>>> has_close_elements([1.0, 2.9, 3.@], 0.5) Method Pass Rate Exact Match
False .

>>> has_close_elements([1.@, 2.8, 3.0, 4.0, 5.0, 2.8], @.3) L-R smgle‘ 24.9 15.8
True L-R reranking 28.2 17.6

e CM infilling 38.6 20.6

for 1dx, elem in enumerate{numbers):
for idx2, elemZ in enumerate(numbers):
if idx !'= idx2:
distance = abs{elem - elemZ)
if distance < threshold:
return True

return False

Constructed from HumanEval [Chen et al. 2021]

Function completion

Single-Line Infilling

0.7 1 /

Mo — - M

0.39 —— CM Infilling
024 — L-R Single
—— L-R Reranking

| 1 |
0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context

def count_words(filename): def count_words(filename):
"""Count the number of occurrences of each word in the file"' """Count the number of occurrences of each word in the file"""
words = {} words = {}
with open(filename, 'r') as file: with open(filename, 'r') as file:
for line in file: for line in file:
line = line.lower().stripQ) line = line.lower().stripQ
for word in line.split(Q): for word in line.split():
if word not in words: if word not in words:
words[word] = @ words[word] = @
words[word] += 1 words[word] += 1

return words return words

Function completion

Single-Line Infilling Multi-Line Infilling
0.8 1 074 — CM Infilling

0.7 - —— L-R Single

—— L-R Reranking

S
o
|

0.5 -

Pass Rate
o o
w EAN

] |

0.341 —— CM Infilling
—— L-R Single
—— L-R Reranking

- \

o
N
|

o
[
|

| | | 1 1 |
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context Fraction of Lines in Right Context

def count_words(filename): def count_words(filename): def count_words(filename):
"""Count the number of occurrences of each word in the file"' """Count the number of occurrences of each word in the file""" """Count the number of occurrences of each word in the file"""
words = {} words = {} words = {}
with open(filename, 'r') as file: with open(filename, 'r') as file: with open(filename, 'r') as file:
for line in file: for line in file: for line in file:
line = line.lower().stripQ) line = line.lower().stripQ | line = line.lower().stripQ
for word in line.split(): for word in line.split(Q): for word in line.split():
if word not in words: if word not in words: if word not in words:
words[word] = @ words[word] = @ words[word] = @
words[word] += 1 words[word] += 1 words[word] += 1

return words return words return words

Evaluation: Docstring Generation

def count_words(filename: str) -> Dict[str, int]:

Counts the number of occurrences of each word in the given file.

:param filename: The name of the file to count.

:return: A dictionary mapping words to the number of occurrences.

with open(filename, 'r') as f:
word counts = {}
for line 1in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word counts[word] = 1
return word_counts

Method BLEU
Ours: L-R single 16.05
Ours: L-R reranking 17.14

Ours: Causal-masked infilling 18.27

[CodeXGlue, Lu et al. 2021]

Evaluation: Return Type Prediction

Type Inference

def count words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for 1ine 1in f:
for word in line.split():
if word in word_counts:
word counts[word] += 1
else:
word_counts[word] = 1
return word_counts

Method F1

Ours: Left-to-right single 30.8
Ours: Left-to-right reranking 33.3
Ours: Causal-masked infilling 59.2

TypeWriter (Supervised) 48.3

[TypeWriter OSS, Pradel et al. 2020]

Evaluation

Variable Name Prediction

def count _words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_count = {}
for line in f:
for word in line.split():
if word in word count:
word_count[word] += 1
else:
word _count[word] =1
return word count

Method Accuracy
Left-to-right single 18.4
Left-to-right reranking 23.5
Causal-masked infilling 30.6

Ablations

» StackOverflow data improves performance

» Roughly comparable performance from infilling and non-
infilling models (but see Ben Allal et al. 2022 and Nijkamp et al.
2023)

4 Size Obi Training Data Train HumanEval = MBPP
(B) J Data Size Tokens Pass@1 Pass@1
1) 6.7 CM multilang + SO 204 GB 52 B 15 19.4
2) 1.3 CM multilang + SO 204 GB 52 B 8 10.9
3) 1.3 LM multilang + SO 204 GB 52B 6 8.9
4) 1.3 LM Python + SO 104 GB 25B 9 9.8
5) 1.3 LM Python 49 GB 11B 5 6.1

Other Infilling Code Models

= SANTACODER: DON’T REACH FOR THE STARS!

Efficient Tl'al{lll'}g of Largguage Models to Loubna Ben Allal* Raymond Li* Denis Kocetkov*
Fill in the Middle Hugging Face ServiceNow Research ServiceNow Research
Mohammad Bavarian * Heewoo Jun" Nikolas Tezak StarCoder: may the source be with you |
John Schulman Christine McLeavey Jerry Tworek Mark Chen

OpenAl Raymond Li? Loubna Ben Allal' Yangtian Zi* Niklas Muennighoff! Denis Kocetkov?
P Chenghao Mou® Marc Marone® Christopher Akiki”>!'? Jia Li® Jenny Chim!! Qian Liu®®

Code Llama: Open Foundation Models for Code

Baptiste Roziére!, Jonas Gehring’, Fabian Gloeckle*, Sten Sootlaf, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, Gabriel Synnaeve!

CODEGEN2: LESSONS FOR TRAINING LLMS ON PRO-

GRAMMING AND NATURAL LANGUAGES

Erik Nijkamp; Hiroaki Hayashi; Caiming Xiong, Silvio Savarese, Yingbo Zhou

Demo

Num Tokens: () ' 64

Temperature: @ - 01
CExiend | Add <infill> mask || |nﬁ51§|

| {

Syntax: | Python v

Demo: huggingface.co/spaces/facebook/incoder-demo

Encoder-Decoder LMs

EEEEEE
v EEEEEE
EEEEEN

=1 EEEEEE

used for pre-train + fine-tune on generation tasks

How do we pre-train seq2seq models?

» LMs P(x): trained unidirectionally
» Masked LMs: trained bidirectionally but with masking
> How can we pre-train a model for P(y|x)?
- Well, why was BERT effective?
>~ Predicting a mask requires some kind of text “understanding”.
- What would it take to do the same for sequence prediction?

» Requirements: (1) should use unlabeled data; (2) should force a
model to attend from y back to x

BART

(AC._E.) (DE.ABC.) (C.DE.AB)

Token Masking Sentence Permutation Document Rotation

<
(a.c.e.)y (ABc.DE.) <IJ (A_.D_E.)

Token Deletion Text Infilling

Infilling is longer
spans than masking

Several possible strategies for corrupting a sequence are
explored in the BART paper

Lewis et al. (2019)

BART

- Model & Objective: Sequence-to-sequence Transformer
trained on this data: permute/make/delete tokens, then predict
full sequence autoregressively

ABCDE
4 f44

Bidirectional :> Autoregressive

< Encoder - Decoder .
Frrrs ey
A B E <ssSABCD

- Data: Same as RoBERTa; 160 GB of text

Lewis et al. (2019)

BERT vs. BART

» BERT: only parameters are an ? P
encoder, trained with masked Bidirectional
language modeling objective. <Encoder
Cannot generate text or do seq2seq rtret
tasks A_CL_E
ABCDE
EERE:
- BART: both an encoder and a Bidirectional Autoregressive
decoder. Can also use just the Encoder Decoder
encoder wherever we would use ? 54 ff> N ;
BERT A B E <ssSABCD

Lewis et al. (2019)

T5: Text-to-Text Transfer Transformer

~ Objective: similar denoising scheme to BART (they were released within a week of
each other in fall 2019).

» Input: text with gaps. Output: a series of phrases to fill those gaps.

~ Lower computational cost compared to BART: predicts fewer tokens.

Original text

Thank you fef inviting me to your party last week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <v> last <7>

Raffel et al. (2019)

Wang et al. (2021)

CodeT5: Objectives

Pre-train like TS (seg-to-seq denoising/masked span prediction), but add identifier-
specific objectives to learn code semantics.

Like T5 I:!ke code de-obfuscation

Y

Masked Input

recursive
binarySearch (arr, left, right, x):
mid = (left +
= x:
mid

Output

binarySearch arr

Output
binary search right) //

[mid] left right x mid

(a) Masked Span Prediction (c) Masked Identifier Prediction

A F 3

recursive binary search

Bimodal Input

recursive binary search
binarySearch (arr, left, right, x):

[0 1 01 0010 O

binarySearch(arr, left, right, x):

mid = (left + right) //
arr [mid] == x:
mid

mid = (left + right) //
arr[mid] == x:
mid

arr [mid] = x :

(b) Identifier Tagging “.____(d) Bimodal Dual Generation

.......

Figure 2: Pre-training tasks of CodeTS5. We first alternately train span prediction, identifier prediction, and identi-
fier tagging on both unimodal and bimodal data, and then leverage the bimodal data for dual generation training.

Wang et al. (2021)

CodeT5: Training

> Pre-train on CodeSearchNet (6 PLs) + BigQuery (C & C#); 8.4M
Instances

>60M and 220M parameter models, trained for 5 & 12 days
on 16 GPUs.

> Couldn’t initialize with T5, because T5’s tokenizer doesn’t
preserve code-specific symbols like { and }. Train own
tokenizer (more in a future class!)

» Then, optionally do multi-task fine-tuning: train on multiple
seqg-to-seq tasks from CodeXGLUE simultaneously (translation,
refinement, summarization, ...).

CodeT5: Analysis

> All components of the objective help. MSP: masked span
prediction. IT: identifier tagging. MIP: masked identifier
prediction

Sum-PY Code-Gen Refine Small Defect

Methods g1 EU) (CodeBLEU) (EM) (Acc)
CodeT5 20.04 41.39 19.06 63.40
MSP 1893 37.44 15.92 64.02
T 19.73 39.21 18.65 63.29

-MIP 19.81 38.25 18.32 62.92

CodeT5: Analysis

> Multi-task fine-tuning sometimes helps and sometimes hurts,
with some effects from task similarity.

Methods Java to C# C# to Java Refine Small Refine Medium
BLEU EM BLEU EM BLEU EM BLEU EM
CodeBERT 7992 59.00 7214 58.80 7742 1640 91.07 5.20
GraphCodeBERT 80.58 59.40 72.64 58.80 80.02 1730 9131 9.10
PLBART 83.02 64.60 7835 6500 77.02 19.21 88.50 8.98
CodeT5-small 8298 64.10 79.10 65.60 76.23 19.06 8920 1092
+dual-gen 8224 6320 78.10 6340 77.03 1750 8899 10.28
__tmuli-task 8349 64.30 7856 6540 77.03 2094 8751 11.11
CodeT5-base 84.03 6590 7987 6690 7743 21.61 87.64 13.96
+dual-gen 81.84 6200 77.83 6320 77.66 1943 9043 11.69
+multi-task 8231 6340 78.01 64.00 78.06 2259 8890 14.18

Code translation and refinement results.

Hybrid Models

CodeT5+

» Specializations of past approaches:
> For translation: T5-like (seg-to-seq denoising) generally best

> For generating new content: GPT-like (unidirectional
decoder-only) generally best

> For doc-level embeddings: BERT-like (MLM bidirectional
encoder) generally best

» CodeT5+: use a seq-to-seq model but train it with a progression
of objectives, and pre-trained initializations

Wang et al. (2023)

CodeT5+: Overview

. 4) 4
Unimodal ! el (| é N
: Code-Text . . Generation Tasks
Code Data : Data Encoder Only LM Text-To-Code Generation,
" . / Math Programming,
" - ~ Code Summarization,
st i 2nd Code Completion
pretraining pretraining - Decoder-only LM) RN
™ ; 4 N
b | x | zero-shot/ | ([:
Encoder- ‘ ““““ ' Encoder- - > | finetuning/ Understanding
Decoder - Decoder - , : Tasks
activate Encoder-Decoder instruction Jext-To-Code Retrieval.
LM | LM | & LM -tuning Code Defect Detection,
/ A\ _ different L) _Code Clone Detection
1 1 modules ~
l s I
' ' Retrieval-augmented
Span Denoising Causal LM Contrastive Loss Matching Loss N Ceneration)
N\ J

CodeT5+, https://arxiv.org/abs/2305.07922

https://arxiv.org/abs/2305.07922

CodeT5+: Supports downstream tasks

. e a
Unimodal ; Bimodal 4 4 \\
; Code-Text X) Generation Tasks
Code Data : Data Encoder-only LM Text-To-Code Generation,
; . v Math Programming,
" - ~ Code Summarization,
1st o | 2nd o Code Completion
pretraining pretraining - Decoder-only LM) 1\
A L (O A \h zero-shot/ || [;
Encoder- ‘ ““““ ' Encoder- - ~ finetuning/ Understanding
" : : Tasks
Decoder " Decoder ctivate || Encoder-Decoder instruction Text-To-Code Retrieval,
LM | LM | < LM -tuning Code Defect Detection,
/ A\ _ different L) _Code Clone Detection
1 1 modules _ ~J) N
! Y Retrieval-augmented
Span Denoising Causal LM Contrastive Loss Matching Loss N Generation)
_ _

CodeT5+: Can operate in different modes

~

E _ / o ~
Unimodal ; Bimodal @ -

: . _ Generation Tasks
Code Data ; CocDIeat;ext " Encoder-only LM Text-To-Code Generation,

; . v Math Programming,

" - ~ Code Summarization,
1st o | 2nd o Code Completion
pretraining pretraining - Decoder-only LM 1 .

Y e N S ' ||zero-shot/ i
Encoder- ‘ ““““ ' Encoder- - ~ finetuning/ Understanding
" : : Tasks
Decoder " Decoder ~ctivate | | Encoder-Decoder instruction Text-To-Code Retrieval,
LM | LM | < LM -tuning Code Defect Detection,
/ A\ _ different L) _Code Clone Detection
1 1 modules |\~ -~ p
' Y Retrieval-augmented
Span Denoising Causal LM Contrastive Loss Matching Loss N Generation
e

N

~

oy

J

CodeT5+: Uses several pre-training tasks

Unimodal : Bimodal . ﬂ- ‘ N

: Code-Text . . Generation Tasks

Code Data ; Data Encoder-only LM Text-To-Code Generation,

; . oy Math Programming,

; s ™ Code Summarization,
st 2nd Code Completion
pretraining ! pretraining -~ Decoder-only LM . .’

4 ™ L0 9) | zero-shot/ | [:
Encoder- ‘ ““““ | Encoder- - > | finetuning/ Understanding
. : : Tasks
DEEEREr | 2PreE activate Encoder-Decoder Instruction Text-To-Code Retrieval,
LM LM | & LM -tuning Code Defect Detection,
- J AN _/ different \) _Code Clone Detection
modules ~
' ™
Retrieval-augmented
Span Denoising Causal LM Contrastive Loss Matching Loss N CnziEe)

N J

CodeT5+: Has two pre-training stages

Unimodal

Code Data

Encoder-
Decoder
LM

Bimodal
Code-Text
Data

pretraining

k J

L

1st
pretraining

]

Encoder-
Decoder
LM

N

Encoder-only LM

S

Decoder-only LM

L~
e

Generation Tasks
Text-To-Code Generation,
Math Programming,
Code Summarization,
Code Completion

N

L “\'I/"

L

Encoder-Decoder

1

aclivate
_/ different \
modules '\

Span Denoising

Causal LM

Contrastive Loss ‘

Matching Loss

zero-shot/

finetuning/
instruction
-tuning

Understanding

Tasks

Text-To-Code Retrieval,
Code Defect Detection,

_ Code Clone Detection J

~

~

Retrieval-augmented
Generation

~

oy

J

Stage 1: Code-only pre-training

Goal: Train model to recover code contexts at different scales

Data: Code from GitHub
Tasks:

> Span Denoising (15% masked tokens)
» Causal LM

> Partial programs

> Complete programs

66

Stage 2: Code and text pre-training

Goal: Train model for cross-modal understanding and generation

Data: CodeSearchNet (Docstring & Code)
Tasks:

» Contrastive Learning (align feature space of code and text
representation)

» Text-Code Matching (predict if semantics match)
» Text-Code Causal LM (text-to-code and code-to-text generation)

67

enc

Code T5+: Architecture

S2: Text-Code
Contrastive

S1: Span
Denoising

S1, S2:
Causal LM

S2: Text-Code
Matching

/'_

—®

A

-

~N

[Feed Forward]

[Biself-Att |
A

s o o o o e e e e e e e e e e s

Encoder

[Feed Forwa rd]

dec

—

{Cross Atte ntion]

A

—

[Causal Self—AttJ

A

/

Decoder

dder: encodes contextual
‘esentations from either
\plete, partial or span-masked
2/text sequences

oder: generates different
yuts based on pretraining task

: Stagel and S2: Stage?2

Code T5+: Compute-Efficient Training

Shallow encoder and deep decoder,
initialized with pretrained weights of a

decoder code model (CodeGen, Nijkamp et
al. 2023)

Only encoder and cross attention layers are
trainable

Decoder weights are frozen

1 Cross Attention

' Encoder | %
ﬁ initialize ﬁ
Pretrained Pretrained
LLM LLM

Compute-efficient training with
frozen LLMs

CodeT5+: Results

HumanEval code generation: slightly outperforms the CodeGen models it is
initialized with

Model Model size pass@1 pass@10 pass@100
Closed-source models
Codex 2.5B 21.4 354 59.5
Codex 12B 28.8 46.8 72.3
code-cushman-001 - 33.5 54.3 77.4
code-davinci-002 - 47.0 74.9 92.1
GPT-3.5 - 48.1 - -
Open-source models
CodeGen-mono 2B 23.7 36.6 57.0
CodeGen-mono 6B 26.1 42.3 65.8
CodeGen-mono 16B 29.3 49.9 75.0
CodeT5+ 220M 120 207 = 316
CodeT5+ 770M 15.5 27.2 42.7
CodeT5+ 2B 24.2 38.2 57.8
CodeT5+ 6B 28.0 47.2 69.8

CodeT5+ 16B 30.9 51.6 76.7

CodeT5+: Results

Code retrieval: outperforms CodeT5 and CodeBERT

Table 6: Text-to-Code Retrieval results (MRR) on CodeXGLUE: CodeT5+ achieves consistent
performance gains over the original CodeT3S models across all 3 retrieval benchmarks in 7 program-
ming languages. Overall, our models demonstrate remarkable performance, outperforming many
strong encoder-based models pretrained with contrastive loss such as SYNCOBERT and UniXcoder.

CodeSearchNet
Model Ruby JS Go Python Java PHP | Overall | C0SQA | AdvTest
CodeBERT 125M 679 620 882 672 616 628 | 693 | 657 | 272

GraphCodeBERT 125M | 70.3 644 89.7 692 69.1 649 71.3 68.4 35.2

SYNCOBERT 125M 722 6777 913 724 723 67.8 74.0 - 38.3
UniXcoder 125M 740 684 915 720 72,6 67.6 74.4 70.1 41.3
CodeGen-multi 350M 66.0 622 900 686 70.1 639 70.1 64.8 34.8
PLBART 140M 675 616 8.7 663 663 61.1 68.6 65.0 34.7
CodeT5 220M 719 655 8388 698 68.6 645 71.5 67.8 39.3
CodeT5+ 220M 7177 708 924 756 76.1 69.8 77.1 72.7 43.3

CodeT5+ 770M 780 713 927 758 762 70.1 77.4 74.0 44.7

	Slide 1: Code Pretraining
	Slide 2: Prompting
	Slide 3: Pre-train and Fine-Tune
	Slide 4: Objectives: Autoregressive Language Modeling
	Slide 5: Objectives: Masked Language Modeling
	Slide 6: Unidirectional vs Bidirectional Transformers
	Slide 7: Objectives: Sequence-to-Sequence
	Slide 8: Which Objective?
	Slide 9: Autoregressive Generation
	Slide 10: OpenAI GPT/GPT2
	Slide 11: Pushing the Limits: GPT-3
	Slide 12: Autoregressive Language Modeling for Code
	Slide 13: Codex: “HumanEval” Benchmark
	Slide 14: Sampling-Based Evaluation
	Slide 15: Codex: Scaling Laws
	Slide 16: Models Generate Good and Bad Code!
	Slide 17: Stages of Training Autoregressive Models
	Slide 18: Pre-Training vs Post-Training
	Slide 19: Pre-Training vs Post-Training
	Slide 20: Pre-Training vs Post-Training
	Slide 21: Pre-Training vs Post-Training
	Slide 22: Pre-Training vs Post-Training
	Slide 23: “Mid-Training”
	Slide 24: Masked Language Modeling
	Slide 25: CodeBERT: Masked Language Modeling Objective
	Slide 26: CodeBERT: Replaced Token Detection Objective
	Slide 27: CodeBERT: Pre-Training
	Slide 28: CodeBERT: Finetuning
	Slide 29: CodeXGLUE Benchmark
	Slide 30: CodeBERT: Results
	Slide 31: CodeBERT: Results
	Slide 32: CodeBERT: Masked Prediction Probing
	Slide 33: Filling-in-the-Middle
	Slide 34: LLM Training Objectives
	Slide 35: Causal Masking / FIM Objective
	Slide 36: InCoder: Model Training
	Slide 38: Zero-Shot Software Tasks via Infilling
	Slide 39: Evaluation
	Slide 40: Evaluation: Function Completion
	Slide 41: Function completion
	Slide 42: Function completion
	Slide 43: Evaluation: Docstring Generation
	Slide 44: Evaluation: Return Type Prediction
	Slide 45: Evaluation
	Slide 46: Ablations
	Slide 47: Other Infilling Code Models
	Slide 48: Demo
	Slide 49: Encoder-Decoder LMs
	Slide 50: How do we pre-train seq2seq models?
	Slide 51: BART
	Slide 52: BART
	Slide 53: BERT vs. BART
	Slide 54: T5: Text-to-Text Transfer Transformer
	Slide 55: CodeT5: Objectives
	Slide 56: CodeT5: Training
	Slide 57: CodeT5: Analysis
	Slide 58: CodeT5: Analysis
	Slide 59: Hybrid Models
	Slide 60: CodeT5+
	Slide 61: CodeT5+: Overview
	Slide 62: CodeT5+: Supports downstream tasks
	Slide 63: CodeT5+: Can operate in different modes
	Slide 64: CodeT5+: Uses several pre-training tasks
	Slide 65: CodeT5+: Has two pre-training stages
	Slide 66: Stage 1: Code-only pre-training
	Slide 67: Stage 2: Code and text pre-training
	Slide 68: Code T5+: Architecture
	Slide 69: Code T5+: Compute-Efficient Training
	Slide 70: CodeT5+: Results
	Slide 71: CodeT5+: Results

