
Evaluation: Metrics and Benchmarks
Daniel Fried

11-891: Neural Code Generation 
https://cmu-codegen.github.io/f2025/

With slides from Zora Wang and Nikitha Rao



The NL2Code Task

▸Given a natural language instruction Q, generate code 
implementation C

Calculate sum over all 
rows of 2D numpy array

a.sum(axis=1)



The Landscape for NL2Code Generation
▸ Transition of Evaluation Metrics: 

▹ Lexical

▹ Neural based metrics

▹ Test case execution

▸ Domain Coverage 
▹ Built-in grammar: sum([1, 2, 4])

▹ Domain-specific: data science

▹ Open domain: diverse Python libraries

▸ Test Automation
▹ Human-written tests

▹ Fuzzing methods

▹ Integrating LLMs

▸ Functional Complexity 
▹ Simple (toy) functions: e.g., LeetCode

▹ Class level

▹ Repository level

time2021

the pre-LLM era

HumanEval & Codex

domain 
coverage

test 
automation

functional 
complexity

HumanEval



Pre-2020

NL2Bash. Lin et al. 2018. 

▸Most code snippets were short, and evaluated using BLEU or exact match.
▸Datasets were fairly large, with dedicated training sets.



Pre-2020

▸Most code snippets were short, and evaluated using BLEU or exact match.
▸Datasets were fairly large, with dedicated training sets.

NL2Bash. Lin et al. 2018. 



Evaluation Metrics



Reference Matching: BLEU

▸Developed for machine translation (Papineni et al. 2002)

▸Compares n-gram precision between predicted and reference

▸Typically, uses n-grams up to 4 (BLEU-4)

Example from Graham Neubig



Issues: Evaluations Are Not Rigorous

[i - 1 for i in l]

ret_list = []
for e in l:

ret_list.append(e + 1)
return ret_list

Return list with elements 
incremented by 1

[i + 1 for i in l]

query

Solution

Output #1

Output #2

High lexical overlap 
with the solution

Low lexical overlap with 
the canonical solution,
But actually correct

l = [1, 2, 3]
Test

[0, 1, 2]

[2, 3, 4]



HumanEval Benchmark

▸Evaluation: test case execution

▸164 hand-written examples, by authors of the paper

▸Why human-written?

▹“It is important for these tasks to be hand-written, since our 
models are trained on a large fraction of GitHub, which already 
contains solutions to problems from a variety of sources. ”



Metrics

▸pass@1: model gets one attempt to solve each question. 
Fraction of problems where the solution passes all test cases.

▸pass@k: sample k solutions for each question. Check if any 
passes. Fraction of problems where one solution passes all test 
cases.



MBPP: Mostly Basic Python Programs

▸Similar to HumanEval, but a bit easier

▸974 short Python problems, written by crowdworkers

▹58% mathematical, 43% list processing, 19% string processing

Austin et al. 2021



MBPP: Mostly Basic Python Programs
▸Model performance is sensitive to sampling temperature and 

number of candidates (similar findings in HumanEval/Codex 
paper)

Austin et al. 2021



MBPP: Mostly Basic Python Programs

▸BLEU against a reference solution is uncorrelated with whether 
samples pass execution tests (similar findings in Codex paper).

Austin et al. 2021



Automated & Improved Testing

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases

▸ Prompt ChatGPT with the GT solution, some inputs, and instructions to 
generate more

Liu et al. 2023



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases

▸ Fuzzing: mutate inputs to the functions, apply the groundtruth function, 
and use the input-output pair to make a new test case.



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases

▸Optionally, minifiy the test sets while preserving code coverage and edge 
case detection.



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases

▸ These extra tests substantially reduce the pass@k of many models!



MultiPL-E

▸ Key idea: it’s relatively easy to translate test cases on simple types (e.g. no 
matrices or functions) from Python to other languages.

▸ This allows porting HumanEval & MBPP to 18 other languages.

Cassano et al. 2022



MultiPL-E

▸Models are generally better on “high-resource” languages with more code 
on GitHub.

▸More analysis of this in the Data lecture, with Starcoder.

Cassano et al. 2022



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸Code might be easily editable to achieve a good solution.
Levenshtein distance: number of character edits required to transform.



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸Dibia et al. compare metrics to evaluate 5 model outputs on 
HumanEval.

▹EditDistance, BLEU, Pass@1

▸Professional programmers with Python experience rate on:

▹Accuracy: judge if the snippets are functionally equivalent 
(judging is easier than writing!)

▹Value: How useful is the snippet as a starting point?

▹Effort: how much effort to modify the solution into a correct one?



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸Value is nearly perfectly correlated with effort (accuracy less so).

▸Of all metrics, Pass@1 is most correlated with Value

▸But, Edit sim > BLEU and a combination is best (as dissimilar, 
incorrect code is bad).



CodeBERTScore: Model-based Evaluation
▸ Captures some intuitions about incorrect code being useful

▸ BLEU and edit distance only give points for exactly matching code

▸ Takes NL code descriptions into account

▸ Use vector similarity from CodeBERT representations

▸ Recall: every reference vector has >=1 candidate vector with high similarity

▸ Precision: every candidate vector has >=1 reference vector with high similarity

Zhou et al. 2023



LLM-as-a-Judge

▸Can we use LLMs to judge the code?

▸Widely used in industry to judge 

▹Code style (whether it’s well-commented, etc.)

▹Overlap with a reference solution (like CodeBERTScore)

▸Much harder to use them to judge code correctness, without 
executing the code



Domains of Code



HumanEval Looks Like Toy Examples?

▸HumanEval Examples Real-World Development 
Code



Broadening Domains

▸ Leetcode Style: HumanEval, APPS, MBPP, LiveCodeBench

▹Manually written or collected from code contest websites

▹ Limited to Python built-in libraries

▸ Limited Domains: e.g., Data Science

▹ DS-1000: StackOverflow questions

▹ ARCADE: Interactive Jupyter Notebooks

▹ … …

▸ Open Domain: ODEX and BigCodeBench



APPS

▸10,000 
problems taken 
from contest 
and exercise 
sites

▸3 difficulty 
levels

▸Has test cases



CodeContests (AlphaCode)

▸Similar to APPS but focuses on improving test coverage, via input 
mutation (like EvalPlus).

▸Manual inspection shows high false-positive rate of model-produced 
solutions.



LiveCodeBench

▸Difficult to ensure that models haven’t trained on benchmarks

▸Live benchmarks: can be updated with problems created after 
models have been trained



LiveCodeBench

▸LiveCodeBench contains several tasks sourced from competition 
programming sites (LeetCode, AtCoder, CodeForces)



LiveCodeBench

▸Gives some evidence that recent post-trained models are 
overfitting to HumanEval



DS-1000

▸ 1,000 data science problems, based on StackOverflow questions
▸Domain-specific test cases, e.g. matplotlib plots have their elements 

programmatically extracted



DS-1000

▸Perturb the problems to reduce chances of memorization, since 
models may have been trained on StackOverflow

▸”Surface” perturbations: don’t change solution. “Semantic”: do, 
but try to keep difficulty the same (e.g. max -> min)



ARCADE

▸Executable problems from Jupyter notebooks



ODEX: Open-Domain, with Evaluation

▸Larger Domain Coverage

▸Test execution on real-world coding queries

▹Collected from StackOverflow questions

▸Support four natural languages as input

▹English, Spanish, Japanese, Russian



ODEX: Open-Domain, with Evaluation

▸Larger Domain Coverage

▸Test execution on real-world coding queries

▸Support four natural languages as input



ODEX: Unique Challenges for Execution

Closed-domain code: easy to execute and verify

Open-domain code:
▸ Random outputs

▸ Specialized verification

▸ (Potentially) not reproducible queries
▹ HTTP requests, e.g., requests.post(“https://def.xyz”, data={‘key’: ‘value’})

random.randint(3, 5)

3

4

5

assert func([1, 2, 10]) == [2, 3, 11]

https://def.xyz


Significant Performance Gaps on Library Usage



BigCodeBench

▸Scaling up to more complex library-using problems, via LLMs



BigCodeBench

▸LLM (GPT-4)-based problem generation, seeded from ODEX



BigCodeBench

▸LLM-based refinement of functions and unit test generation

▸Further checking by human annotators, with aid of a code 
interpreter



BigCodeBench


	Default Section
	Slide 1: Evaluation: Metrics and Benchmarks

	Codegen
	Slide 2: The NL2Code Task
	Slide 3: The Landscape for NL2Code Generation
	Slide 4: Pre-2020
	Slide 5: Pre-2020
	Slide 7: Evaluation Metrics
	Slide 8: Reference Matching: BLEU
	Slide 11: Issues: Evaluations Are Not Rigorous
	Slide 12: HumanEval Benchmark
	Slide 13: Metrics
	Slide 14: MBPP: Mostly Basic Python Programs
	Slide 15: MBPP: Mostly Basic Python Programs
	Slide 16: MBPP: Mostly Basic Python Programs
	Slide 18: Automated & Improved Testing
	Slide 19: Automated & Improved Testing
	Slide 20: Automated & Improved Testing
	Slide 21: Automated & Improved Testing
	Slide 22: MultiPL-E
	Slide 23: MultiPL-E
	Slide 24: Incorrect Code Can Be Valuable Too!
	Slide 25: Incorrect Code Can Be Valuable Too!
	Slide 26: Incorrect Code Can Be Valuable Too!
	Slide 27: CodeBERTScore: Model-based Evaluation
	Slide 28: LLM-as-a-Judge
	Slide 29: Domains of Code
	Slide 30: HumanEval Looks Like Toy Examples?
	Slide 31: Broadening Domains
	Slide 32: APPS
	Slide 33: CodeContests (AlphaCode)
	Slide 34: LiveCodeBench
	Slide 35: LiveCodeBench
	Slide 36: LiveCodeBench
	Slide 37: DS-1000
	Slide 38: DS-1000
	Slide 39: ARCADE
	Slide 40: ODEX: Open-Domain, with Evaluation
	Slide 41: ODEX: Open-Domain, with Evaluation
	Slide 42: ODEX: Unique Challenges for Execution
	Slide 43: Significant Performance Gaps on Library Usage
	Slide 44: BigCodeBench
	Slide 45: BigCodeBench
	Slide 47: BigCodeBench
	Slide 48: BigCodeBench


