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What Makes a Model Good?

Function pass rate on HumanEval Python [Chen et al. 2021] by amount of Python data & model scale:

CodeGen-Mono
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The Stack, SantaCoder, and StarCoder



The Stack: Dataset

GH Archive Raw dataset

query «— git clone 137 M repos
gl — > @ 52 B files

102 TB of data

220 M repo
names
selecting file
extensions
near- license V
deduplication filtering
< < @ 69 TB of data
2.9 TB of data 6.4 TB of data

[Kocetkov et al. 2022]



The Stack: Dataset

Raw dataset Permissive

Apache
20 BSD-3-Clause

Permissive license distribution of licenses used to filter the dataset:

MIT (67.7%) | Apache-2.0 (19.1%) | BSD-3-Clause (3.9%) | Unlicense (2.0%) |
CCO0-1.0 (1.5%) | BSD-2-Clause (1.2%) | CC-BY-4.0 (1.1%) | CC-BY-3.0 (0.7%) |
OBSD (0.4%) | RSA-MD (0.3%) | WTFPL (0.2%) | MIT-0 (0.2%) | Others (166) (2.2%)

[Kocetkov et al. 2022]



: Dataset

The Stack
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MinHash Near-Deduplication

Perm. + near-dedup

Permissive
Language Size (GB) Files (M) Size (GB) Files (M) Size (GB) Files (M)

All-licenses

194.79

1633.05 | 3135.95  317.41 | 1450.75

29648.2

Total




The Stack: Python Models

» Possible to approximate Codex-12B performance with permissively licensed
data? Train 350M models on Python

» Deduplication always improves performance
(https://huggingface.co/blog/dedup)

> License filtering hurts, but there’s enough data available to match Chen et al.
2021

Dataset Filtering pass@1 pass@10 pass@100 Python Data
Codex (300M) Exact-dedup?  13-17 20.17  36.27 180 GB
CodeGen (350M) unknown 12.76 23.11 35.19

Python all-license None 13.11 21.77 36.67 740 GB

Near-dedup 17.34 27.64 45.52
Python permissive-license  None 10.99 15.94 27.21 191 GB
Near-dedup 12.89 22.26 36.01 80 GB



SantaCoder: Overview

> Preparation for a big run: explorations at 1B scale

» Data: The Stack

» Tokenizer: BPE following GPT-2 recipe; use a digit splitter

> Ablations
> Multi-query attention and infilling (FIM, Bavarian et al. 2022)
> Data filtering



SantaCoder: Data Filtering Ablations

> Remove repos with < 5 stars
- Hurts substantially!

> Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

> More aggressive near-duplicate filtering
+ Very slight improvements

» Remove files with low character-to-token ratios
+ Very slight improvements



SantaCoder: Final Model

» 1B parameter, with infilling (FIM) and multi-query attention
» 268GB of data: 118B tokens. Java, JavaScript, Python
> ~6 days on 96 V100s

Left-to-right pass @100

Fill-in-the-middle ex. match

Model Size | Java JavaScript Python | Java JavaScript Python
InCoder 6.7B | 0.36 0.38 0.47 | 0.49 0.51 0.31
CodeGen-multi 2.7B | 0.42 0.39 0.39 X X X
CodeGen-mono 2.7B | X X 0.57 X X X
Codex!? 25B | X X 0.60 X X X
SantaCoder 1.1B | 041 0.47 0.49 | 0.62 0.60 0.44




StarCoder: A Large-Scale Multilingual Model

We follow the natural distribution and sample data from 86 languages
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

78 other
languages
25%

Java

Commits 11%

4%
Issues
7%
Python
8% PHP Markdown
10%

JavaScript
8%




StarCoder: Data Selection

Selected 86 languages to be used in training out of the 358 in the Stack
Included:
> Languages with more than 500 MB of data

> Languages ranked within the top 50 by one of two commonly used rankings of language
popularity.

Excluded:
> languages that are no longer actively supported
> configuration languages
> D and Swift (human error!)
Limited:
> Data formats like JSON and YAML
> Long lines
> Low alpha-numeric characters
> HTML



StarCoder: Data Inspection

» Randomly selected 1000 files for
each programming language
extension

» 18 BigCode members verified 300
extensions

> Excluded 36 extensions

> Decide whether to keep or
remove long line filter and
alpha filter for each extension
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https://docs.google.com/spreadsheets/d/1Lk-pTk_rXI__fCgixr7ZWSi8wR09Zzd2j_G90J80r00/edit?usp=sharing

StarCoder (v2): Data Filtering

Long line filters: we first remove all files with more than 100k lines as those files are likely to be data
or generated code. We also remove files with an average line length of more than 100 characters or
a maximum line length of more than 1000 characters for all languages, excluding HTML, JSON,
Markdown, Roff, Roff Manpage, SMT, TeX, Text, and XML. For the mentioned languages, we
remove files where the longest line exceeds 100k characters.

Autogenerated filter: we remove files classified as auto-generated by the is_generated function
of go-enry ( , ). Additionally, we exclude files containing one of {“auto-generated”,

7«

“autogenerated”, “automatically generated”, “generated automatically”, “this file is generated”} in
the first 5 lines of the file.

Alpha filter: we remove files with less than 25% of alphabetic characters for all languages except
Motorola 68K Assembly and WebAssembly, where we only remove files with less than 25% of
alpha-numeric characters due to the syntax of those languages.

Encoded data filter: we detect files with inline encoded data using the following regular expressions:
— Base64 strings: [a-zA-Z0-9+/\n=]{64, }
— Hexadecimal sequences: (?:\b(?:0x|\\x)?[0-9a-fA-F]{2}(?:,|\b\s*)){8,}
— Unicode strings: (?:\\u[0-9a-fA-F]{4}){8,}

We remove the file if any of the substrings matching these expressions is longer than 1024 characters
or if the fraction of matched characters is more than 50% of the file.



Pll dataset annotations

> Data composition
> 12,000 code files
> 7,000 pre-filtered to probably have PIl, 5,000 random
> 31 programming languages

> Pl Annotation

> 7 entities: Names, Usernames, Emails, IP addresses, keys, passwords,
and IDs

> 1,399 crowd-workers from Toloka



StarEncoder

> Model
> Bidirectional Transformer similar to BERT-base
> Same vocabulary as StarCoder
> ~125M params
> https://huggingface.co/bigcode/starencoder

> Pre-training
> Follows data mix of StarCoder
» Commits and Issues included
> Trained for 400B tokens
» Masked language modeling + next “sentence” prediction objective
> https://github.com/bigcode-project/bigcode-encoder



https://huggingface.co/bigcode/starencoder
https://huggingface.co/bigcode/starencoder
https://github.com/bigcode-project/bigcode-encoder
https://github.com/bigcode-project/bigcode-encoder
https://github.com/bigcode-project/bigcode-encoder
https://github.com/bigcode-project/bigcode-encoder
https://github.com/bigcode-project/bigcode-encoder
https://github.com/bigcode-project/bigcode-encoder

PlIl Models

Entity type Train Test

EMAIL 4721 1742
NAME 3847 1298
IP_ADDRESS 1941 521
USERNAME 1320 346
PASSWORD 390 148

Named entity recognition (NER) training

Fine-tune StarEncoder with a linear classification

tagging layer on 6 PIl target classes

. KEY 171 118
Pseudo-labeling

Take 18 000 files and label them (noisily) with an
ensemble of two NER models: 113 000 entities
(x7 times increase of labeled entities)
Method Email address IP address Key

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
Regex 96.20% 97.47% 96.83% 71.29% 87.71% 78.65% 3.62% 49.15% 6.74%
NER 94.01% 98.10% 96.01% 88.95%  94.43% 91.61% 60.37% 53.38% 56.66%

+ pseudo labels 97.73% 98.94% 98.15% 90.10% 93.86% 91.94% 62.38% 80.81% 70.41%




Jupyter Notebooks

Jupyter -

notebooks ‘

GL

Guesslang

deiibll
S_—
Jjupyter
S’

Markdown  Code

1M+

Jupyter - structured

IR
-

jupyter |
.

1.4M+

Jupyter - scripts



Jupyter Notebooks

Model input:

<jupyter_text>Let’s test our ‘is_prime‘ function:<jupyter_code>
print(is_prime(3))

print(is_prime(4))

print(is_prime(29))

print(is_prime(33))<jupyter_output>

Model output:

True
False
True
False

Model input:

<jupyter_code>numbers = [1, 9, 8, 3, 27]
print([n*2 for n in numbers])<jupyter_output>

Model output:

[2, 18, 16, 6, 54]




GitHub Data

Issues (discussion threads)

<issue_start>title + USERID: comment
<issue_comment>USERID: comment ...
<eos>

Model input:

<issue_start><issue_comment>username_@: I am trying to train a
text classifier based on BERT using ‘transformers‘ but I
get the error: ‘RuntimeError: CUDA Out of memory‘.<
1ssue_comment>

Model output:
username_1: Hi,

This is not an issue with transformers. You should look at your
GPU usage and see if you can free up some space before
training starts (or use smaller batch sizes).

Commits and Commit Messages

Model input:

<commit_before>def fibonacci(n):<commit_msg>add type hints to
function<commit_after>def

Model output:

def fibonacci(n: int) -> list[int]:




Recap: What About Data Reuse?

> Mueninghoff et al.
were able to train up
to 4 epochs on fixed
data before seeing
significant
degradation relative
to using new data

Final test loss
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https://twitter.com/karpathy/status/1654898539661754368
https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Recap: Scaling Laws

» With a fixed compute budget o7 Medatron-Turing NLG (5308)
(number of GPU days), can ) ¢
train a larger model on fewer o (1708)7«/*?,6”"” (2808 HUSHLSES
tokens, or a smaller model on 1008 P —— bt B P
more tokens
§ le23 FLOPs
£ 108 1le22 FLOPs
» Scaling laws predict (for a k
given pre-training dataset, ) 1e21 FLOPs
and compute budget), what " 2 0 FLODs
size Transformer and number
of tokens will produce the
beSt |OSS o — QOur estimated compute-optimal scaling

10B 100B 1T 10T
Tokens


https://twitter.com/karpathy/status/1654898539661754368
https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Chinchilla Optimality Ignores Inference

» Using a smaller model than recommended by the Chinchilla scaling
laws comes at a cost to training compute, but it can be small
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Fraction of optimal model size k_N

https://www.harmdevries.com/post/model-size-vs-compute-overhead/


https://twitter.com/karpathy/status/1654898539661754368
https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

StarCoder Models

» StarCoderBase
>15.5B parameters, trained on 1T tokens (~3 epochs)

> This is much smaller than Chinchilla optimal, but we were
aiming for inference efficiency

> Multiple epochs didn’t seem to hurt
>~1 month on 512 80GB A100s
> Megatron-LM with BF16 and FlashAttention
» StarCoder
> Continued training on 35B tokens of Python (two epochs)



Evaluation Harness: unified framework for efficient code evaluation

» Data parallelism for fast text generation with accelerate

» Unified framework for 7+ code benchmarks: HumanEval, MultiPL-E in 18
programming languages, DS-1000, PalL ...

» Docker containers for code execution

‘ Official version: https://github.com/bigcode-project/bigcode-evaluation-harness
VLLM fork (may be faster): https://github.com/iNeil77/vlim-code-harness/tree/main



MultiPL-E

» Translations of the HumankEval
benchmark into other programming
languages.

» Together, StarCoderBase and
StarCoder outperform OpenAl’s code-
cushman-001 on HumanEval in 12
languages.

» Surprisingly, StarCoder outperforms
StarCoderBase on 9 languages in
addition to Python.

Language code-cushman-001 StarCoder StarCoderBase

cpp 30.59 31.55 30.56
c-sharp 22.06 21.01 20.56
d 6.73 13.57 10.01
go 19.68 17.61 21.47
java 31.90 30.22 28.53
julia 1.54 23.02 21.09
javascript 31.27 30.79 31.70
lua 26.24 23.89 26.61
php 28.94 26.08 26.75
perl 19.29 17.34 16.32
python 30.71 33.57 30.35
r 10.99 15.50 10.18
ruby 28.63 1.24 17.25
racket 7.05 0.07 11.77
rust 25.22 21.84 24.46
scala 27.62 27.61 28.79
bash 11.74 10.46 11.02
swift 22.12 22.74 16.74
typescript 31.26 32.29 32.15

MultiPL-E translated HumanEval results



StarCoderBase: Performance Over Training

200B 400B 600B 800B  1000B
Training tokens



StarCoderBase: Performance By Data

» How correlated is code completion
performance for a language with the
amount of data available for a
language?

» Train model for 200B tokens (on all
languages). Evaluate on all languages,

getting a dot for each language.
Observe a strong correlation.

» Continue training, evaluate again at
400B tokens. The correlation remains
strong, and line shifts upward.

35

107t 100 10t 102
Size after dedup, GB



Language Competition?

> InCoder saw slight competition between languages at the 1.3B
param scale:

4 Size Obi Training Data Train Train HumanEval = MBPP
(B) J- Data Size Tokens Compute Pass@1 Pass@1
1) 6.7 CM multilang + SO 204 GB 52B 3.0Z 15 19.4
2) 1.3 CM  multi lang + SO 204 GB 52B 0.6Z 8 10.9
3) 13 LM  multi lang + SO 204 GB 52B 0.6Z 6 8.9
4) 13 LM Python + SO 104 GB 25B 0.37Z 9 9.8
5 13 LM Python 49 GB 11B 0.1Z 5 6.1
6) 2.3 LM  multilang + SO 204 GB 52B 1.1Z 9 12.7

» But is there competition among languages in these large models?



Scaling Laws for Mixed-Modal Models

> |n multi-modal settings, modalities compete when models are
small; can synergize when models are large.

Speech|Text Competition

1.7 Legend
350M
16 2.7B
1.5 — 30B
' Scaling Law Predictions

o141\ T Competition Barrier
K
- 1.3
o
042

1.1

1.0

0.9

0 10000 20000 30000 40000
Number of Updates

Figure 5: We plot 05*(%5\,1‘;};225&&?; =cb)) throughout the training process. If this ratio is below

1, we have broken through the competition barrier. Additionally, we add the predictions for the final
ratio as predicted from our scaling laws.

Aghajanyan and Yu et al. 2023



Higher Capacity Models Afford More Diverse Data?

Table 4: Overview of the data composition of StarCoder2 models. We refer to the training set of the 3B
model as the-stack-v2-train-3B.

Dataset Tokens (B) 3B 7B 15B
the-stack-v2-train-smol 525.5 v v X
the-stack-v2-train-full 775.48 X X v
Pull requests 19.54 v v v

5 Issues 11.06 v v v

E Jupyter structured 14.74 v v v

v Jupyter scripts 16.29 v v v

o Kaggle scripts 1.68 v v v

E Documentation 1.6 v v v

4 OpenWebMath 14.42 X v v

T Wikipedia 6.12 X v v

S StackOverflow 10.26 v/ v/ v/

5 Arxiv 30.26 X v v

» LHQ 5.78 v v v

% Intermediate Repr. 6 v v v
Unique tokens (B) 622.09 658.58 913.23




DS-1000: Practical data tasks requiring APl use

Here is a sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
I'd like to add inverses of each existing column to the dataframe and name

them based on existing column names with a prefix, e.g. inv_A is an inverse of

column A and so on.

The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]})
Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it ... [omitted for brevity]

Problem

A:

<code> Code Context
import pandas as pd

df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>

BEGIN SOLUTION

<code>

[insert]

</code>

END SOLUTION

<code>

print(result)

</code>

Reference Solution

[ result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_")) ]

ﬁgﬂ N . ‘34$ﬂ
o A 3 <O PR §
X & A% 8 » o
Format Model W « e $° e c"i&& < Overall
Number of problems: 155 220 291 68 106 115 45 1,000
Completion InCoder-6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
Completion CodeGen-16B-Mono 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Completion code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Completion StarCoderBase 47.0 27.1 10.1 19.5 21.7 27.0 20.5 23.8
Completion StarCoder 51.7 29.7 114 214 20.2 29.5 24.5 26.0



Evaluating Infilling

Model Java JavaScript Python
InCoder-6B  0.49 0.51 0.31
SantaCoder  0.62 0.60 0.44
StarCoder 0.73 0.74 0.62

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Packages type check
v Total ¥/
InCoder 30 128 234

StarCoderBase 49 128 38.3

TypeScript type inference (TypeWeaver
benchmarks)

Model BLEU
InCoder-6B 18.27
SantaCoder 19.74
StarCoderBase  21.38
StarCoder 21.99

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Model Non-None F1 All F1
InCoder-6B 59.1 46.8
SantaCoder 66.9 78.5
StarCoderBase 77.4 86.6
StarCoder 77.1 86.4

Python return-type prediction
(InCoder/TypeWriter benchmarks)



Testing 8K Window: Perplexity with Long Contexts

Window Size Language

cpp  c-sharp C go  java javascript  php r ruby  rust
2K tokens 2.01 1.90 1.71 1.35 1.65 1.98 1.73  1.72 216 1.84
8K tokens 1.79 1.66 1.61 1.21 1.54 1.68 1.43 148 2.02 1.65

» Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
» Demonstrates StarCoder can benefit from information within long files or repositories.

» Longer contexts provides noticeable decreases in perplexity.



Membership Checking and Indexing

Multiple levels of data

attribution documentation tOOISI Source: chilin0525/model-layer-profiling/test.py | Language:
, :

python | License: MIT

Am | in The Stack?

from transformers import AutoTokenizer, AutoModel
import torch

Stack: Data Portrait import torch.cuda.profiler as profiler
' import nvidia_dlprof_pytorch_nvtx
(stack.dataportraits.org)

Sta rCOder: Dataset Sea rCh Q_ # call the magic code generation model

from transfarmears import AutaTokeniz

iokenizer = AutcTokenizer.from_pretrained(“gpi2”)

Lightweight CheCkS for Other demOS/plugin ! inputs = tokenizer("Hello world!”, return_tensors="pt"}
We can analyze the data; end users can

Matching Text

I n te ra Ct Found spans are in gray. The longest span is in blue, Hovering over a character highlights the longest
span that includes that character (there may be overlapping shorter spans). Clicking shows the
StarCoder might be one of the most semperent subatings below
# call the magic code generation model
documented LLMs + dataset combos rom castomers import AtoToeniz
tokenizer = AutaTokenizer.from_pretrained("gpt2”)
inputs = fokenizer{*Hello world!", refurn_tensors="g:"|

Substring Hashes -~


https://huggingface.co/spaces/bigcode/in-the-stack
https://stack.dataportraits.org/
https://huggingface.co/spaces/bigcode/search
https://huggingface.co/spaces/bigcode/search
http://drive.google.com/file/d/1GIvpQuYRfTgXvYm2r-FQtVJMWeM0ai0_/view

DeepSeek Coder



DeepSeek Coder

» 1.3B, 6.7B, and 33B parameter models

» Trained from scratch on 2 Trillion tokens of code from 87
languages

» FIM loss, and 16K context length



DeepSeek Coder: Data

> 87% code, 10% code-related English NL, 3% code-unrelated Chinese
NL

> Pre-training: 800GB, 2 Trillion tokens.
> StarCoder filtering and less aggressive deduplication (repo-level)

» In addition to applying the filtering rules mentioned in Section 2.1, we also employ a compiler
and a quality model, combined with heuristic rules, to further filter out low-quality data. This
includes code with syntax errors, poor readability, and low modularity. We provide the statistical

> May have up-sampled Python relative to the natural distribution?
> Probably not license-filtered?



DeepSeek Coder: Repo-Level Context

» Parse file dependencies and arrange repo files in the context
window using a topological ordering.

» Theoretically can handle 64K tokens, but “empirical
observations suggest that the model delivers its most reliable
outputs within a 16K token range”



DeepSeek Coder: Data, Data, Data

HumanEval-Pass@1

0.5 - StarCoder2: 3-4T tokens
(1T unique)
0.4 - 3B:31.7 pass@1
0 /B:35.4 pass@1
= 0.3 - P StarCoder-15B :
© Codex-12B as An Avat ’(mixed) 15B:46.3 pass@1
0.2 - (mixed)
0.1 InCoder 6B
' (mixed)
0.0

0 250 500 750 1000 1250 1500 1750 2000
Tokens (Billions)

- DeepSeek-Coder-Base-1.3B = DeepSeek-Coder-Base-6.7B == DeepSeek-Coder-Base-33B



DeepSeek Coder: Results

> MultiPL-E HumanEval and MBPP

Model Size | Python | C++ | Java | PHP | TS | C# | Bash | JS | Avg | MBPP
Multilingual Base Models

code-cushman-001 12B | 335% | 31.9% | 30.6% | 28.9% | 31.3% | 221% | 11.7% | - - -

CodeGeeX2 6B | 36.0% | 292% | 25.9% | 23.6% | 20.8% | 29.7% | 6.3% | 24.8% | 24.5% | 36.2%
StarCoderBase 16B | 31.7% | 31.1% | 28.5% | 254% | 34.0% | 34.8% | 8.9% | 29.8% | 28.0% | 42.8%
CodeLlama 7B | 31.7% | 29.8% | 342% | 23.6% | 36.5% | 36.7% | 12.0% | 29.2% | 29.2% | 38.6%
CodeLlama 13B | 36.0% | 37.9% | 38.0% | 34.2% | 45.2% | 43.0% | 16.5% | 32.3% | 35.4% | 48.4%
CodeLlama 34B | 482% | 447% | 44.9% | 41.0% | 42.1% | 48.7% | 15.8% | 42.2% | 41.0% | 55.2%
DeepSeek-Coder-Base 1.3B | 34.8% | 31.1% | 32.3% | 24.2% | 28.9% | 36.7% | 10.1% | 28.6% | 28.3% | 46.2%
DeepSeek-Coder-Base 6.7B | 49.4% | 50.3% | 43.0% | 38.5% | 49.7% | 50.0% | 28.5% | 48.4% | 44.7% | 60.6%
DeepSeek-Coder-Base 33B | 56.1% | 58.4% | 51.9% | 44.1% | 52.8% | 51.3% | 32.3% | 55.3% | 50.3% | 66.0%

> DS-1000
Model Size | Matplotlib | Numpy | Pandas | Pytorch | Scipy | Scikit-Learn | Tensorflow | Avg
CodeGeeX2 6B 38.7% 26.8% 14.4% 11.8% | 19.8% 27.0% 17.8% 22.9%
StarCoder-Base 16B 43.2% 29.1% 11.0% 20.6% | 23.6% 32.2% 15.6% 24.6%
CodeLlama-Base 7B 41.9% 24.6% 14.8% 16.2% | 18.9% 17.4% 17.8% 22.1%
CodeLlama-Base 13B 46.5% 28.6% 18.2% 19.1% | 18.9% 27.8% 33.3% 26.8%
CodeLlama-Base 34B 50.3% 42.7% 23.0% | 25.0% | 28.3% 33.9% 40.0% 34.3%
DeepSeek-Coder-Base 1.3B 32.3% 21.4% 9.3% 8.8% 8.5% 16.5% 8.9% 16.2%
DeepSeek-Coder-Base 6.7B 48.4% 35.5% 20.6% 19.1% | 22.6% 38.3% 24.4% 30.5%
DeepSeek-Coder-Base  33B 56.1% 49.6% 25.8% 36.8% | 36.8% 40.0% 46.7% 40.2%




Recap: Scaling laws of transfer

test loss
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DeepSeek Coder: Effects of Transfer

» V-1.5: start with a model trained on lots of NL text (DeepSeek-
LLM), then fine-tune on 2T tokens (70% code, 30% NL)

> Instruct: fine-tune on 2B tokens of instructions (details unclear)

Programming  Math Reasoning Natural Language
Models Size HumanEval MBPP GSM8K MATH MMLU BBH HellaSwag WinoG ARC-C
DeepSeek-Coder-Base 6.7B  44.7%  60.6% 43.2% 192% 36.6% 44.3% 53.8%  57.1% 32.5%

DeepSeek-Coder-Base-v1.5 6.9B 43.2% 60.4% 624% 24.7% 49.1% 552%  69.9% 63.8% 47.2%

DeepSeek-Coder-Instruct 6.7B  66.1% 65.4% 62.8% 28.6% 37.2% 469% 55.0%  57.6% 37.4%
DeepSeek-Coder-Instruct-vl.5 6.9B  64.1% 64.6% 72.6% 34.1% 49.5% 53.3% 72.2%  63.4% 48.1%




DeepSeek Coder: Example from Instruct-33B

CODE

Q1: Write a game snake using pygame

Sure, here is a simple implementation of the classic Snake
game using Pygame. This code will create a window with a
snake that can be controlled using the arrow keys. The snake
will grow in length each time it eats the food. The game will
end if the snake hits the edge of the window or its own tail.

“*python
import pygame
import random

running = True
‘While running:

screen.fill(BLACK)
snake.draw()
food.draw()
pygame.display.flip()

clock.tick(SPEED)

pygame.quit()

This code sets up a basic game loop where the snake moves in
response to key presses, and the game ends if the snake hits the
edge of the window or its own tail. The snake grows in length
each time it eats the food. The game continues until the player
closes the window.

Run Code

CODE

Q2: Add a scoring system in the top left corner

To add a scoring system to the top left corner of the game
window, you can create a function to display the score and
increment it each time the snake eats the food. Here's how you
can modify the code to include a scoring system:

o

python

running = True
While running:

screen.fill(BLACK)
snake.draw()
food.draw()
display_score(score)
pygame.display.flip()

clock.tick(SPEED)
pygame.quit()

In this updated code, we've added a “score’ variable to keep
track of the player's score, which is incremented each time the
snake eats the food. The “display_score" function is used to
render the score text and display it in the top left corner of the
window. The “display_score’ function is called after the snake
has moved and the screen has been filled with the black color,
but before the *pygame.display.flip()* call, so that the score is
drawn on top of everything else.

Snake Game

Score: 7

Run Code r

https://chat.deepseek.com/coder



SeedCoder



SeedCoder: LLM-based Data Curation

» Past work found that data filtering improves model quality

» Hypothesis: easier to ask an LLM to judge quality than to hand-
craft heuristic rules

Preprocessing Quality Filtering Data for Regular Pretraining
( § ' — \ .
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[ =5 ’
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p. vy
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SeedCoder: Pre-training

» Code data from GitHub (1T tokens):
> First, apply standard heuristics

> Then, ask an LLM judge (DeepSeek-V2-Chat) to label files with
ratings for readability, modularity, clarity, reusability

> Use this data to fine-tune a faster LLM (Llama2-1.3B) as a
regression model; filter using this

> Code and text from the web (1T tokens)

> Train a retrieval model to extract code-related content from the
CommonCrawl dataset

> Use an LLM evaluator to judge whether to include files



SeedCoder: LLM-based Data Curation
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> Train an 8B parameter model

> Pre-training:

» Data quality does make a difference:
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SeedCoder: Continued Pre-training / Mid-training

» 130B tokens of GitHub and web data

» Take a seed dataset of 100K high-quality examples from a
diverse set of sources

» Train a FastText embedding model to distinguish these seed
examples from negative examples

> Some hand-engineering of negatives here?
» Collect more high-quality examples
> [terate 2-3 rounds



SeedCoder: Continued Pre-training / Mid-training

> This high-quality data seems to really help

Model Siz HumanEval MBPP
®| HE HE* | MBPP MBPP*
~8B Models

StarCoder2-7B 7B | 354 299 54.4 45.6
DeepSeek-Coder-6.7B-Base 6.7B | 47.6  39.6 70.2 56.6
CodeQwenl.5-7B 7B | 51.8 45.7 72.2 60.2
OpenCoder-8B-Base 8B | 66.5 634 79.9 70.4
Qwen2.5-Coder-7B 7B | 72.0 67.1 79.4 68.3
Seed-Coder-8B-Base 8B | 774 68.3 82.0 69.0




What Makes a Model Good?

Data size, model size, data filtering, optimization quality, and competition/synergies among
training data...

CodeGen-Mono
0
.26 /o Codex-12B [Chen et al. 2021]

10
)
S
3 34%
S StarCod o
- ©6% art-oder PaLM-Coder
210’
>
a O©12% 15%

100 0 1 2

10 10 10

Model Parameters (Billions)



Questions?
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