
Inference Algorithms
Daniel Fried

11-891: Neural Code Generation 
https://cmu-codegen.github.io/s2024/

With slides from Graham Neubig



Single-Sample Generation



Autoregressive Code Modeling

Jupyter notebook demo



The Generation Problem

▸ We have an autoregressive model of P(X), how do we use it to 
generate an output X?

▸ Two methods:
▹ Argmax (“mode-seeking”): Try to generate the output with the 

highest probability.
▹ Sampling: Try to generate a random output according to the 

probability distribution.



Argmax type 1: Greedy Search

▸ One by one, pick the single highest-probability token

while xj-1 != “</s>”:
xj = argmax P(xj |x1, …, xj-1)

▸ Deterministic

▸ Not exact, real problems:
▹ Will often generate the “easy” tokens first
▹ Will prefer multiple common tokens to one rare token



Argmax type 2: Beam Search

▸ Instead of picking one high-probability token, maintain several paths

Adjust the “beam size” b to spend more time on searching, find a better 
scoring hypothesis



Limitations of Greedy / Beam Search
▸ (Transformer) LMs tend to repeat text with high probability



Limitations of Greedy / Beam Search
▸ The most probable output may be uninformative!

def count_words(filename: str) -> Counter[str, int]:

pass

words = Counter()
with open(filename, ‘r’) as f:

for line in f.readlines():
words.update(line.split())

return words
word_counts = Counter()
with open(filename, ‘r’) as f:

for line in f.readlines():
word_counts.update(line.split())

return word_counts

Prompt:

Completion 1:

Completion 2:

Completion 3:

log 𝑝(𝑐!| 𝑝𝑟𝑜𝑚𝑝𝑡) = −4.69

log 𝑝(𝑐"| 𝑝𝑟𝑜𝑚𝑝𝑡) = −18.13

log 𝑝(𝑐#| 𝑝𝑟𝑜𝑚𝑝𝑡) = −19.19

Probabilities from DeepSeekCoder-6.7B

Completion 4: return Counter(tok for line in   
open(filename, ‘r’).readlines() for 
tok in line.split())

log 𝑝(𝑐$| 𝑝𝑟𝑜𝑚𝑝𝑡) = −23.31



Sampling

▸ Randomly generate words one-by-one. (aka “ancestral sampling”)

▸ Maximum likelihood training assumes samples are sampled from the 
underlying distribution => 
samples are what your model thinks the training data looks like.

while xj-1 != “</s>”:
xj ~ P(xj | x1, …, xj-1)



Limitations of Sampling

▸ Neural LMs that use a softmax assign non-zero probability to every word!
▸ The tail of the distribution is noisy

Hewitt et al. 2022. 
Truncation Sampling as Language Model Desmoothing



Sampling from a Truncated Distribution

▸ Remove the lowest-probability words at each time step.

P(x6 | “The capital of Pennsylvania is”)

Harrisburg
Philadelphia
Pittsburgh
Easton
Lancaster
Allentown
Washington

34.3%
31.1%
12.9%
2.2%
1.8%
1.6%
1.5%

Top-k Sampling
(e.g. k=5)
Fan et al. 2018

Nucleus (top-p) Sampling
(e.g. p=0.8)
Holtzmann et al. 2019



Temperature Sampling

𝑝 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑙𝑜𝑔𝑖𝑡
𝜏 ) ∝ exp

𝑙𝑜𝑔𝑖𝑡
𝜏



Beware of Tokenization!

▸ What happens if your prompt ends in the middle of a token?
▹ The link is <a href=http:
▹ Last token is 27, but we want it to be 1358
▹ Tokenizers are usually greedy: 27 16 16 was probably never seen in 

the training data, so model is unlikely to generate it

▸ Code models often have whitespace as part of the 
vocabulary, so you may get different results if you call 
`prompt.strip()` to remove trailing whitespace

https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38



Conditioned Generation

▸ Simple approach: include meta-data as special symbols, or comments

Example from InCoder, Fried et al. 2023



Chain-of-Thought Prompting

CoT: Wei et al. 2022.  These examples: Yin et al. 2023

▸ Can we access parts of the training distribution where reasoning steps are 
spelled-out? Also lets the model do more steps of computation per output.



Zero-Shot Chain-of-Thought

Kojima et al. 2022 



Multi-Candidate Methods



Can Rerank By Probability

[Codex paper, Chen et al. 2021]



But Beware Model Biases

[Coder-Reviewer reranking, Zhang et al. 2022]



Mutual Information Helps Avoid Biases

[Coder-Reviewer reranking, Zhang et al. 2022]



Mutual Information Helps Avoid Biases

[Coder-Reviewer reranking, Zhang et al. 2022]



Mode Splitting

Draw on the board



Minimum Bayes Risk (MBR)
▸ Assume your model has some error (loss); choose an output that minimizes your 

expected error (risk).
▸ Or equivalently, assume your model probability is spread over good stuff; choose 

something close to high probability model outputs.

It’s MBR All The Way Down, Bertsch*, Xie* et al. 2023



MBR with Execution

def longest(strings: List[str]) -> Optional[str]: 
""" Out of list of strings, return the longest one. 
Return the first one in case of multiple strings of
the same length. Return None if the list is empty."""

longest([]) == ___ 
longest(['x', 'y', 'z']) == ___ 
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == ___

Test Inputs:Description:

Minimum Bayes Risk with Execution:

Generate 
Functions

Execute on
Test Inputs

== None 
== ‘z’
== ‘kkkk’

== None 
== ‘x’
== ‘zzzz’

Cluster by Outputs

Here, the MBR gain function is 1{functions have the 
same outputs for these inputs}

Shi et al. 2022



MBR with Execution

Shi et al. 2022



AlphaCode: Setting



AlphaCode: Approach

▸ Training:
▹ Pre-train encoder-decoder LMs (300M – 41B parameters) on GitHub 

code
▹ Fine-tune on 13K problems scraped from Codeforces contest site

▸ Inference:
▹ Sample huge number of candidate solutions (~1M) for each problem
▹ Filter the candidates on public test cases, then apply MBR clustering 

with model-generated test inputs to choose 10 output solutions



AlphaCode: Google-Scale Sampling



AlphaCode: Results

▸ Filtering generated solutions 
using public test cases is 
necessary

▸ MBR clustering gives further
benefits



AlphaCode: Results

▸ Sampling with big models is 
expensive!



CodeT: Overview

▸ Intuition: when generating test cases, some test cases may be higher 
quality than others.
▹ We can evaluate test case quality using generated functions, and vice 

versa.
▸ Sample many functions, and many test cases, and look for consensus 

sets of (function, test) pairs.



CodeT: Method

[Chen et al. 2022]

def longest(strings: List[str]) -> Optional[str]: 
""" Out of list of strings, return the longest one. 
Return the first one in case of multiple strings of
the same length. Return None if the list is empty."""

longest([]) == None 
longest(['x', 'y', 'z']) == ‘z’
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == ‘kkkk’

A

B

C

D

E

F

G

a b c d e f g h

✔

✔

✔

✔ ✔

✔ ✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

if len(strings) == 0: 
return None

return max(strings, key=lambda s: len(s))



CodeT: Method

[Chen et al. 2022]

def longest(strings: List[str]) -> Optional[str]: 
""" Out of list of strings, return the longest one. 
Return the first one in case of multiple strings of
the same length. Return None if the list is empty."""

longest([]) == None 
longest(['x', 'y', 'z']) == ‘z’
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == ‘kkkk’

A

B

C

D

E

F

G

a b c d e f g h

✔

✔

✔

✔ ✔

✔ ✔

✔ ✔

✔

✔

✔

✔

✔

✔

✔ ✔

✔

if len(strings) == 0: 
return None

return max(strings, key=lambda s: len(s))

B

D

E

d f g

9



CodeT: Method

▸ Like MBR-Exec / AlphaCode-C, except…
▹ It generates test cases (inputs and outputs) too
▹ It ranks clustered functions by the number of functions times the

number of passed test cases
▸ When tests * solutions is large, use sampling (RANSAC algorithm)
▸ If k solutions are wanted (e.g. pass@k), choose k sets with one function 

from each set



CodeT: Results

▸ Large improvements in pass@k scores over baseline sampling and MBR / 
AlphaCode-like clustering.



CodeT: Results

▸ How high quality are these test cases, really?

HumanEval test case accuracy and “toxicity” (test cases that any generated 
program can pass but the ground truth cannot).



CodeT: Results

▸ How high quality are these test cases, really?

Coverage scores, test accuracy, and solution accuracy may be very 
different for a given model.



CodeT: Results

▸ How high quality are these test cases, really?

Even though tests are noisy, consensus ranking still helps substantially.



MBR also works with a learned similarity 
function

▸ Chen et al. 2023 prompt an LLM to choose the consensus output 



Incorporating Syntax



Abstract Syntax Networks

▸ Approach 1: Constrain the model

Rabinovich, Stern, and Klein 2017



Abstract Syntax Networks

Rabinovich, Stern, and Klein 2017



Constrained Decoding
▸ Approach 2: Constrain the model’s probability distributions
▸ Completion engines give valid completions of any prefixes, using 

language semantics and user’s context (e.g. a database)

Synchromesh, Poesia et al. 2022. 
See also Shin et al. 2021, Shin and Van Durme 2022



Constrained Decoding

Synchromesh, Poesia et al. 2022. 
See also Shin et al. 2021, Shin and Van Durme 2022



Constrained Decoding

Monitor-guided Decoding, Agrawal et al. 2023



Grammar Prompting

Wang et al. 2023


