Inference Algorithms

Daniel Fried
11-891: Neural Code Generation
https://cmu-codegen.github.io/s2024/

Language
Technologies
Institute

With slides from Graham Neubig

Single-Sample Generation

Autoregressive Code Modeling

Jupyter notebook demo

The Generation Problem

» We have an autoregressive model of P(X), how do we use it to
generate an output X?

» Two methods:

> Argmax (“mode-seeking”): Try to generate the output with the
highest probability.

> Sampling: Try to generate a random output according to the
probability distribution.

Argmax type 1: Greedy Search

» One by one, pick the single highest-probability token

while xj-1 1= “</s>":
X; = argmax P(x; | xq, ..., Xj-1)

» Deterministic

» Not exact, real problems:

> Will often generate the “easy” tokens first
> Will prefer multiple common tokens to one rare token

Argmax type 2: Beam Search

» Instead of picking one high-probability token, maintain several paths

-1.05

-0.92

E <s> : "

-1.39

Adjust the “beam size” b to spend more time on searching, find a better
scoring hypothesis

Limitations of Greedy / Beam Search

» (Transformer) LMs tend to repeat text with high probability

An unprecedented number of mostly young whales have become stranded on
the West Australian coast since 2008.

WebText
The number of stranded whales has increased by more than 50 per cent in the past year,
with the number of stranded whales on the West Australian coast increasing by more

(than 50 per cent in the past year. The number of whales stranded on the West Australian
coast has increased by more than 50 per cent in the past year, with the number of
stranded whales on the West Australian coast increasing by more than 50 per cent in the

Beam Search, b=16 past year

Token Probabilities for "l don't know." Repeated 200 times

1
>
205
o
0
o
o
0

Figure 4: The probability of a repeated phrase increases with each repetition, creating a positive
feedback loop. We found this effect to hold for the vast majority of phrases we tested, regardless of
phrase length or if the phrases were sampled randomly rather than taken from human text.

» The most probable output may be uninformative!

Prompt:

Completion 1:

Completion 2:

Completion 3:

Completion 4:

pass

words = Counter()
with open(filename, ‘r’) as f:
for 1line in f.readlines():
words.update(line.split())
return words

word_counts = Counter()
with open(filename, ‘r’) as f:
for 1line in f.readlines():
word_counts.update(line.split())
return word_counts

return Counter(tok for 1line 1in
open(filename, ‘r’).readlines() for
tok in line.split())

Limitations of Greedy / Beam Search

def count_words(filename: str) -> Counter[str, int]:

logp(cq| prompt) = —4.69

logp(c,| prompt) = —18.13

logp(c;| prompt) = —19.19

logp(c,| prompt) = —23.31

Probabilities from DeepSeekCoder-6.7B

Sampling

» Randomly generate words one-by-one. (aka “ancestral sampling”)

while xj-1 1= “</s>":
Xj ~ P(xj | X1, ..., Xj-1)

» Maximum likelihood training assumes samples are sampled from the
underlying distribution =>
samples are what your model thinks the training data looks like.

Limitations of Sampling

» Neural LMs that use a softmax assign non-zero probability to every word!
» The tail of the distribution is noisy

True Distribution Neural LM Word Distribution

Truncation
Threshold

0

Smoothing

J““IIIII"I“L Probability-Sorted Vocab

Figure 1: A neural LM as a mixture of the true distribu-
tion, and a uniform-like smoothing distribution. Trunca-
tion aims to approximate the true distribution support.

Hewitt et al. 2022.
Truncation Sampling as Language Model Desmoothing

Sampling from a Truncated Distribution

» Remove the lowest-probability words at each time step.

P(xe | “The capital of Pennsylvania is”)

Harrisburg 34.3%

Philadelphia 31.1%

Pittsburgh 12.9%

Easton 2.2%

Lancaster 1.8% Nucleus (top-p) Sampling
Allentown 1.6% (e.g. p=0.8)

Washington 1.5% Holtzmann et al. 2019

Temperature Sampling

temperature 0.1

p(y) = softmax(

o
(o]
1

probability
© o ©9
N RO

o
(=]

1 1

20 30
tokens by probability

temperature 0.5

40

50

probability
©o o o
N w 4

o
[
1

©
o
|

1 1

20 30
tokens by probability

40

50

logit

T

probability

probability

logit
) & exp(.)

temperature 1.0

0.15 1

0.10 A

0.05 -

0.00 -

10 20 30 40 50
tokens by probability

temperature 2.0

0.010 A

o
o
o
w
1

0.000 -

0 10 20 30 40 50

tokens by probability

Beware of Tokenization!

len = 18 27 .
510 "The® 21610 3 :L‘
3048 ° link’ o
310 v is’ T3 L
SN 1450
66 ‘at 16 L
3860 " href’ . . .
568 = » What happens if your prompt ends in the middle of a token?
2413 “http : : _ .
1358 i/ > The 1link is <a href=http:
2700 “www > Last token is 27, but we want it to be 1358
15
9906 “google’ > Tokenizers are usually greedy: 27 16 16 was probably never seen in
;21 s the training data, so model is unlikely to generate it
com
16 A » Code models often have whitespace as part of the
8716 “search’ . .
32 7 vocabulary, so you may get different results if you call
- ¢

‘prompt.strip() to remove trailing whitespace

https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38

Conditioned Generation

» Simple approach: include meta-data as special symbols, or comments

<| file ext=.sh |>
count the words in all files in the current directory
find . -type f -name "*.txt" -exec wc -w {} \; | sort -nr | head -n 20

<| file ext=.py |>

count the words in all files 1in the current directory
import os

import sys

def main():
cwd = os.getcwd()

words = 0

for filename in os.listdir(cwd):
if filename.endswith(".in"):
fname = os.path.join(cwd, filename)
with open(fname) as infile:
for line in infile:
words += len(line.split())

print(words)

if __name_ == '_main__"':
main()

Example from InCoder, Fried et al. 2023

Chain-of-Thought Prompting

» Can we access parts of the training distribution where reasoning steps are
spelled-out? Also lets the model do more steps of computation per output.

[1] import pandas as pd
"~ < import matplotlib.pyplot as plt

[2] # Exercise 1
df = pd.read_csv('scores.csv')

[3] # Schema of Dataframes:
Columns in df with example values:
Stu_Name (Mike), Engineering (9@), English (89), Math (92)

[4] o # Problem: Get the students with an averaged score N/
- 7 (O above 90 for science subjects. <:{
(format of the answer determines the prompting method)
[4a] # Solution: [4d] # Solution: Let's solve this problem step-by-step.

df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2

Step 1: Create a new column with the average score of
df[df['Science_Avg'] > 90][['Stu_Name', 'Science_Avg']]

engineering and math

df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2

[4b] # Solution: # Step 2: Get the rows whose average score is above 90
df['Science Avg'] = (df['Engineering’] + df['Math’]) / 2 df_score_above 90 = df[df['Science_Avg'] > 90]
df_score_above 90 = df[df[’'Science_Avg'] > 90] # Step 3: Return the student name and average scores
result = df_score_above 90[['Stu_Name®, 'Science Avg']] result = df_score_above_90[['Stu_Name', 'Science_Avg']]

CoT: Wei et al. 2022. These examples: Yin et al. 2023

Table 4: Robustness study against template measured on the MultiArith dataset with text-davinci-
(*1) This template is used in Ahn et al. [2022] where a language model is prompted to gene
step-by-step actions given a high-level instruction for controlling robotic actions. (*2) This temg

Zero-Shot Chain-of-Thought

is used in Reynolds and McDonell [2021] but is not quantitatively evaluated.

No. Category Template Accuracy
1 instructive Let’s think step by step. 78.7
2 First, (*1) 71.3
3 Let’s think about this logically. 74.5
4 Let’s solve this problem by splitting it into steps. (*2) 72.2
5 Let’s be realistic and think step by step. 70.8
6 Let’s think like a detective step by step. 70.3
7 Let’s think 57.5
8 Before we dive into the answer, 55.7
9 The answer is after the proof. 45.7
10 misleading Don’t think. Just feel. 18.8
11 Let’s think step by step but reach an incorrect answer. 18.7
12 Let’s count the number of "a" in the question. 16.7
13 By using the fact that the earth is round, 9.3
14 irrelevant By the way, I found a good restaurant nearby. 17.5
15 Abrakadabra! 15.5
16 It’s a beautiful day. 13.1
- (Zero-shot) 17.7

Kojima et al. 2022

Multi-Candidate Methods

Pass rate

Can Rerank By Probability

Sample Ranking Heuristics

— Qracle
0.7 4 —— Docstring backtranslation
—— Sum logp
—— Mean logp
0.6 1 —— Random
0.5 =
0.4 -
0.3 =
- M’\ ' .” ' L
0.2 - _— 4~ “'N‘hmmﬂl
™ T ' 1 T r T
10° 101 102

Number of samples (k)

[Codex paper, Chen et al. 2021]

But Beware Model Biases

Coder log p(y|x) Normalized Coder log p(y|x) / |y| 0.60 0-shot Codex 002 on MBPP Sanitized
0.0 8)
o, ‘ ()
—0.2 0.58
—04 0.56
—06 0.54
‘ —0.8 0.52° _ coder
~ -1.0 0.50 — N. Coder
50 100 150 200 250 300 0 50 100 150 200 250 300 1 6 11 16 21 26 31 36 41 46
Lengths of Code Samples |y| Lengths of Code Samples |y]| # Samples
(a) (b) (c)

[Coder-Reviewer reranking, Zhang et al. 2022]

Mutual Information Helps Avoid Biases

3 -shot task-agnostic prompting
Coder Prompt

<text>Print info of "bash"</text>

<code>echo $(1ls -1 /bin/bash)</code>
. 2 more demonstration examples

<text>Change the owner of "dir"

to "nginx"</text>

<code>

Reviewer Prompt

<code>echo $(1ls -1 /bin/bash)</code>
<text>Print info of "bash"</text>

. 2 more demonstration examples
<code>chown nginx:nginx dir</code>
<text>Change the owner of "dir"
to "nginx"</text>

argmax, log

log p(z|y)

log p(z|y)p(y|r) = log p(z|y) + log p(y|x)

(Coder-Reviewer Reranking)

p(y, x)
p(z)p(y)°

= argmax, (1 — a)logp(y|r) + alog p(x|y)

log p(y|z)
Y|

(Normalized Coder-Reviewer Reranking)

[Coder-Reviewer reranking, Zhang et al. 2022]

Mutual Information Helps Avoid Biases

COOOOO000000
TIUIUIUIN NN DD
NI OOOR WA

HumanEval MBPP-S
Random 48.0_1.2 58.1_¢.7
.. Coder 38.1_71 55.3_4.5
0-shot Codex 002 on MBPP Sanitized N Coder 59.7_o.x 60.0_0 5
Reviewer 57.7_3.5 5D.8_3.7
Coder-Reviewer 53.2_3.5 60.5_3.9
Norm. Coder-Reviewer 61.5_1¢ 60.8_¢.7
ﬁLo
d
M os I
— Coder — Coder-Reviewer S M Reviewer
— Reviewer % 0.6 : Eocéird or
O Coder-Reviewer
1 o6 11 16 21 26 31 36 41 46 § 0.4 B N Coder-Reviedlr
Samples 2 0.2 I
(e]
£ . il
) Return Repetition Copy
Only Prompt

Adversarial Cases

[Coder-Reviewer reranking, Zhang et al. 2022]

Mode Splitting

Draw on the board

Minimum Bayes Risk (MBR)

» Assume your model has some error (loss); choose an output that minimizes your
expected error (risk).

» Or equivalently, assume your model probability is spread over good stuff; choose
something close to high probability model outputs.

A : 1
§ = argmin R(y') R(y') ~ 5 > Ly, y)
y' ew |y| yeYy
= argmin]Ey|a:[L(y Y)] _ _i e /
v ey |y| Z (y7 Y)
yey
B argrr;ln Z L. v)p(yle) U = argmax — Z G(y,y
S — 9
VT e y' ey |3’ o]

It’s MBR All The Way Down, Bertsch*, Xie* et al. 2023

MBR with Execution

Description:

Test Inputs:

def longest(strings:
" Qut of list of strings,

the same length.

List[str]) -> Optional[str]:

Return the first one in case of multiple strings of
Return None if the list is empty."""

return the longest one.

longest([]) ==

Minimum Bayes Risk with Execution:

Generate
Functions

>

Here, the MBR gain function is 1{functions have the
same outputs for these inputs}

longest(['x', 'y', 'z']1) ==
longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', ‘'abc'l]) ==
Cluster by Outputs
== None
== ‘Z’
== ‘kkkk
Execute on
Test Inputs
> g
== None
== ‘X’
== ‘zz77

|

Shi et al. 2022

MBR with Execution

a1
(o)

a1
[*)}

Execution Accuracy (x100)
g2 8 g

S
0e]

Method MBPP Spider NL2Bash

Greedy (3-shot) 47.3 2.5 50.84+2.6 52.8+ 2.9
Sample (3-shot) 47.74+1.5 4854+2.6 53.0+2.9

MBR-EXEC 58.2+0.3 63.6 0.8 58.5+1+0.3

R e 60

““““““““ S - =
... o bablaiadi e e e S i
----------------- —
Xeo £ S50 e
.......... MBR’EXEC = § B — MBR‘EXEC S e SUuTT— S— MBR'EXEC
—— MBR-tokenBLEU § 55 ,::,_:r:é‘:ff -_T—_:f’ ~ —— MBR-tokenBLEU 2 4 -~ MBR-tokenBLEU
__ ---- MBR-charBLEU g 4 _---- MBR-charBLEU @ —— MBR-charBLEU
P ML < 50 e e ML R3O0 N e ML
ol e e MALL g T MALL P O MALL
AREEsr -~ 35 45 \ 9 g -~
R o u 8 . T,
& 40 : g+ 1— -
20 40 60 80 100 120 0 20 40 60 8 100 120 0 20 40 60 8 100 120
Samples # Samples # Samples
(a) MBPP (b) Spider (c) NL2Bash

Shi et al. 2022

AlphaCode: Setting

Backspace Example Input 1 t=int(input ())

You are given two strings s and t, both consisting of lowercase English letters. 2 2 for i in range(t):

You are going to type the string s character by character, from the first character ababa 3 s=input ()

to the last one. ba)
ababa 4 t=1nput()

When typing a character, instead of pressing the button corresponding | bb 5 a=[]

to it, you can press the “Backspace” button. It deletes the last character you | aaa 6 b=[]

have typed among those that aren’t deleted yet (or does nothing if there are no aa‘iab 5 £ in s:

characters in the current string). For example, if s is “abcbd” and you press :;a:aa or j 1 o

Backspace instead of typing the first and the fourth characters, you will get the 8 a.a ppend (])

string “bd” (the first press of Backspace deletes no character, and the second Example Output o] for j in t:

press deletes the character ’c’). Another example, if s is “abcaa” and you press — 10 b.a ppen d(])

Backspace instead of the last two letters, then the resulting text is “a”. s 11 a.reverse()

Your task is to determine whether you can obtain the string t, if you ﬁg s 12 b.reverse()

type the string s and press “Backspace” instead of typing several (maybe zero) 13 c=[]

characters of s. Bxplanation 14 while len(b)!=0 and len(a)'=0:
In order to obtain “ba” from “ababa”, . S .

Input you may press Backspace instead 15 if a[0]==b[0]:

The first line contains a single integer g (1 < g < 10°) the number of test cases. | of typing the first and the fourth 16 c.append(b.pop(0))

The first line of each test case contains the string s (1 < |s| < 10°). Each | characters. 17 a.pop(0)

character of s is a lowercase English lettgr. ' ; 18 elif a[0]!=b[0] and len(a)!=1:

The second line of each test case contains the string t (1 < |t| < 10°). Each | There’s no way to obtain “bb” 0

character of t is a lowercase English letter. while typing “ababa”. 19 a.pop(0)

It is guaranteed that the total number of characters in the strings over all test 20 a.pop(0)

cases does not exceed 2 - 10°. There’s no way to obtain “aaaa” 21 elif a [0]1'=b[O] and len(a)==
while typing “aaa”. 22 a.pop(0)

Output 23 if 1 (b)==

For each test case, print “YES” if you can obtain the string t by typing the string | 1 order to obtain “ababa” while 1 en .

s and replacing some characters with presses of “Backspace” button, or “NO” if typing “aababa”, you have to press 24 print("YES")

you cannot. Backspace instead of typing the 25 else:

You may print each letter in any case (YES, yes, Yes will all be recognized as | first character, then type all the e print("NO")

positive answer, NO, no and nO will all be recognized as negative answer). remaining characters.

AlphaCode: Approach

» Training:

> Pre-train encoder-decoder LMs (300M — 41B parameters) on GitHub
code

> Fine-tune on 13K problems scraped from Codeforces contest site

» Inference:
> Sample huge number of candidate solutions (~¥1M) for each problem

> Filter the candidates on public test cases, then apply MBR clustering
with model-generated test inputs to choose 10 output solutions

AlphaCode: Google-Scale Sampling

— 30})M
1B
041 — 3B
— QB
— 4]
0.3
V4
©)
a
©
0.2
0.1
0.0 0 N1 n2 N3 N4 N5 N6
10 10 10 10 10 10 10

Sample budget

AlphaCode: Results

» Filtering generated solutions
using public test cases is
necessary

» MBR clustering gives further
benefits

0.351

0.301

o
N
u

Solve rate

©
=
ol

o
N
o

pass@k
10@k with filtering + clustering
10@k with filtering

10@k no filtering

101 102 103 104 105 106
Sample budget

AlphaCode: Results

0.30

» Sampling with big models is 0.20-
expensive! ©

10-! 10° 10' 102 103 10% 105 106
Sampling TPU-seconds per problem

(b) Solve Rate vs. Sampling Compute

CodeT: Overview

» Intuition: when generating test cases, some test cases may be higher
qguality than others.

> We can evaluate test case quality using generated functions, and vice
versa.

» Sample many functions, and many test cases, and look for consensus
sets of (function, test) pairs.

l l+lnstructton _____________________
(Pre-trained Language Model)
\’ i \
Code Solution 1 Dual ; Test Case 1
Code Code Solution 2 Execution Test Case 2 Test Case
: Agreement ! L
Generation | @ o Generation)

The Best Code Solution

CodeT: Method

if len(strings) == 0:
return None
return max(strings, key=lambda s: len(s))
1
1

] o] et [Fa] [P 5] [Te] [T
v v

A

B v v Vv
c Vv v Vv

D Vv v Vv
E v v Vv
F v

G V v vV

[Chen et al. 2022]

CodeT: Method

if len(strings) == 0:
return None
return max(strings, key=lambda s: len(s))
1
1

v v v B
v v v D 9

v H B E
E
B =

A T m O O W X

[Chen et al. 2022]

CodeT: Method

» Like MBR-Exec / AlphaCode-C, except...

> It generates test cases (inputs and outputs) too
> It ranks clustered functions by the number of functions times the
number of passed test cases
» When tests * solutions is large, use sampling (RANSAC algorithm)

» If k solutions are wanted (e.g. pass@k), choose k sets with one function
from each set

CodeT: Results

» Large improvements in pass@k scores over baseline sampling and MBR /

AlphaCode-like clustering.

Methods Baseline AlphaCode-C CODET
k 1 10 100 1 2 10 1 2 10
HumanEval
code-cushman-001 33.5 54.3 77.4 39.6 46.4 63.8 445110 50.1 65.711.4
code-davinci-001 39.0 60.6 84.1 41.6 50.7 75.6 50.211.2 589 758152
code-davinci-002 47.0 74.9 92.1 55.1 ©64.1 84.4 658188 75.1 86.611.7
INCODER-6B 16.4 152 283278 47.5470 17.7 23.8 34.8 20.64.2 276 37.1838
CODEGEN-MONO-16B 29.7203 50.3499 73.7750 27.3 385 64.4 36.770 44.7 59.39.0
MBPP
code-cushman-001 45.9 66.9 79.9 51.5 59.0 73.3 55495 61.7 7T2.758
code-davinci-001 51.8 72.8 84.1 56.2 64.7 788 619101 69.1 79365
code-davinci-002 58.1 76.7 84.5 62.0 70.7 79.9 67.796 74.6 81.5438
INCODER-6B 21.3 194 46.5 66.2 26.7 35.3 56.2 344131 43.9 582117
CODEGEN-MONO-16B 42.4 65.8 79.1 41.0 559 73.6 49571 56.6 68.52.7

CodeT: Results

» How high quality are these test cases, really?

> >
-t o

2 0.4 [] cushman-001 2 0.6- == cushman-001
a 1 davinci-001 a] davinci-001
203] davinci-002 & [davinci-002
% '-g 0.4- [INCODER
Q Qo

© 0.2 o [| CODEGEN
a a

€ £ 0.2

2 0.1 @

Q Qo

o o :

0.0 =
00 0.1 02 03 04 05 06 0.7 0.8 0.9

0.0
0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
Test Case Toxicity Rate

Test Case Accuracy

HumanEval test case accuracy and “toxicity” (test cases that any generated
program can pass but the ground truth cannot).

CodeT: Results

» How high quality are these test cases, really?

Code Coverage

Methods Statement Branch
code-cushman-001 95.3 08.1
code-davinci-001 94.9 97.6
code-davinci-002 95.7 98.5

INCODER 94.0 96.3

CODEGEN 78.2 78.6

Table 11: The Code Coverage (%) statistics of
test cases generated by five models on the Hu-
manEval benchmark.

Coverage scores, test accuracy, and solution accuracy may be very
different for a given model.

CodeT: Results

» How high quality are these test cases, really?

Methods Code Solution Only f’ Test Case Only f”

k 1 2 10 1 2 10

code-cushman-001 41.2757° 49.27%9 61.9°°¢ 29.97:%° 36.671%° 59.5 02

code-davinci-001 ~ 44.47 27 54.7°%*2 69.0.57 35. 0—152 46.07129 170. 2;32
code-davinci-002 55.9.39 67.07%! 82.7. 27 58. 4;{;%4 65.1710-0 86.1. 7,

Even though tests are noisy, consensus ranking still helps substantially.

MBR also works with a learned similarity
function

» Chen et al. 2023 prompt an LLM to choose the consensus output

USC prompt

| have generated the following responses
ResPOnses to the question {question}

ﬁ‘ Response 0: {response_0}
Ouestion}——» LLM Response 1: {response_1} > LLM— Selected

A

response

Select the most consistent response
based on majority consensus.

Table 2: Accuracy on code generation benchmarks with gpt-3.5-turbo.

Dataset Approach Execution Accuracy Valid Efficiency Score

Greedy decoding 42.4 44.4
Random 41.9 44.0

BIRD-SQL 5C Exec 45.6 48.1
USC 45.5 48.8
Greedy decoding 26.0
Random 26.8

ARCADE SC-Exec (strict match) 29.8 N/A
SC-Exec (fuzzy match) 30.3

USC 30.1

Incorporating Syntax

Abstract Syntax Networks

» Approach 1: Constrain the model

Call

name: [

. func args
IDI, IlI, ’r’, IeI,

IWI,

IAI,
cost:
type:

race:
class:

IOI,
4 4
1,

rrs r£r
1, r£r,
r~7 rnwr
p’, "h",

[*£2"]
[Minion’]

rarity: [’Common’]

["Beast’]
["Neutral’]

description:
"Adjacent’,

[

"minions’,

"have’,

I+I,

lll,

"Attack’,

I.I]

Name

identifier

Call

“Aura”

func

Name

args

Call

func

Name

args

health: ["2"]
attack: [727]
durability: [’-1"]

identifier Num identifier Call

e et

SN BeastEE= VY| “ChangeAttack” “MinionSelector” func args

object Name

class DireWolfAlpha (MinionCard) : 1
def init . (self):
super () .__init__ (
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)
def create_minion(self, player):
return Minion (2, 2, auras=][
Aura (ChangeAttack (1), MinionSelector (Adjacent()))
1)

identifier

“Adjacent”

(b) Excerpt from the same AST, corresponding to the code snip-
pet Aura (ChangeAttack (l),MinionSelector (Adjacent())).

Rabinovich, Stern, and Klein 2017

Abstract Syntax Networks

O ClassDef\

1 @ For (If test r
@ while If body stmt*
@ Assign
@ Return oxelde

\ o ... / stmt*

(a) A composite type module choosing a constructor for

—— expr

([COOOO0)

the corresponding type. (b) A constructor module computing updated vertical
LSTM states.
- identifier @ _ init
stmt* ‘— @ create_minion
O stmt © add_buff add buff
@ change attack
@ @ @ damage

o ...
(c) A constructor field module (sequential cardinal- k j

ity) generating children to populate the field. At each (d) A primitive type module choosing a value from a
step, the module decides whether to generate a child and closed list.

continue (white circle) or stop (black circle).

Rabinovich, Stern, and Klein 2017

Constrained Decoding

» Approach 2: Constrain the model’s probability distributions

» Completion engines give valid completions of any prefixes, using
language semantics and user’s context (e.g. a database)

P : SELECT Cit
Qvt/lreuscthlz:‘ty has Prompt GPT-3 FROM thh}c/s AS T1 JOIN Airports AS T2
) ON T1. AlrgortCode.7“T2_§9prceA1rport
the highest number Example #1: GROUP BY City =
of departing flights?" "Return the team with the ORDER BY COUNT(*) DESC LIMIT 1
most technicians." Q No column "AirportCode" in table aliased as T1
S BERT SELECT Team
+T5Ty —> FROM Technician
GROUPEY Team cCSsb —>» ?:(L):C;E;Hs AS T1 JOIN Airports AS T2
ORDER BY COUNT(*) DESC

ON T1.AtrpertCedeSourceAirport = T2.AirportCode
LIMIT 1

. GROUP BY City
e el Example #2: V// bv ORDER BY COUNT(*) DESC LIMIT 1 0

S?L
Completion GPT-3
Engine

Synchromesh, Poesia et al. 2022.
See also Shin et al. 2021, Shin and Van Durme 2022

Constrained Decoding

SQL Vega-Lite SMCalFlow

Model Exec. Valid Dist. | Acc. Valid Dist. | Acc. Valid Dist.
Andreas et al. (2020) - - - - ; - | 2% - -

Srinivasan et al. (2021) - - - | 64%S) - - - - -

Rubin & Berant (2021) | 71%°) - - - - - - - -

Scholak et al. (2021) | 79%‘%) 98% - - - - - - -

GPT-3 13B 16% 43% 042 | 14% 55% 051 | 38% 76% 043
” + CSD 20% 66% 044 | 17% 100% 048 | 40% 95% 0.40
» + TST 14% 48% 0.42 - . - 60% 88% 022
» + CSD + TST 19% 72% 0.43 - ; - 63% 98% 0.17
GPT-3 175B 28% 49% 036 | 20% 67% 036 | 44% 77% 0.41
” + CSD 35% 73% 036 | 25% 100% 032 | 45% 97% 0.37
” + TST 31% 56% 0.35 - - - 60% 88% 0.24
» + CSD + TST 37% 76% 0.34 - ; - 66% 97% 0.18
Codex 175B 56% 73% 025 | 39% 8% 024 | 45% 79% 0.37
» + CSD 61% 85% 023 | 40% 99% 023 | 46% 97% 0.33
» + TST 60% 81% 0.23 - . - 63% 90% 021
” + CSD + TST 64% 85% 0.23 - - - 63% 99% 0.19

Synchromesh, Poesia et al. 2022.
See also Shin et al. 2021, Shin and Van Durme 2022

Constrained Decoding

Method to be completed o text-davinci-003 and SantaCoder

Method
parseServer

privzte Se;YiTNode ﬁar;:S:;viEEStiing url) { host(arr[0])

reconditions.checkNotNu url); T

int start = url.indexOf(str:"/") + 2; .Egsg(lnteger.parseInt(arr[l]))
int end = url.lastIndexOf(str:"?") == -1 ? -build();

url.length() : url.lastIndexOf(str:"?");
String str = url.substring(start, end);
String [] arr = str.split(regex:":");
\/ SantaCoder with monitor guided decoding

return ServerNode.Builder

.newServerhode () withIp(arr[0]) Resolved Type
I .withPort(Integer.parselnt(arr[1])) ServerNode.Builder

Y .build(); "ServerNode.Builder.newServerNode()"

(a) Example where text-davinci-003 and SantaCoder generate wrong (b) Annotated partial AST for the code to
identifiers, but SantaCoder with MGD generates correct identifiers. the left.

Monitor-guided Decoding, Agrawal et al. 2023

Grammar Prompting

LLM Prompt

You are an expert programmer, and you need to write a program for the given natural language query.
First, you should write a grammar that contains all the necessary BNF rules. Then, you should write pro-
grams that conform to your predicted rules.

(optional) G: [BEGIN RULES] [END RULES]
M) find the meeting on Wednesday with Bob and Carol
Gly™M]: event i:= "QueryEvent(” constraint ")”

constraint "(&" constraint constraint ")"

| "(start_?" date ")"

| "(attendee_?" attendee attendee ")"
date = "Wednesday"”
attendee i= "Bob"” | "Carol”

x: Add meeting with Jean’s manager on Wednesday at 3PM

LLM Output

G- event

"CreateEvent(” constraint ")"

constraint = "(&" constraint constraint ")"
| "(start_?" date time ")"
| "(attendee_?" attendee ")"
date = "Wednesday"”
time ‘= "NumberPM(3)"
attendee n= "FindManager (" attendee ")" | "Jean"

y: CreateEvent(& (start_? Wednesday NumberPM(3))(attendee_? FindManager(Jean)))

Wang et al. 2023

