Interacting with Code
Generators

02/29/2023
CMU Neural Code Generation




In 2012...

Natural languages like English are rich, complex, and powerful. We begin with the
conjecture that most software is also natural. in the sense that it is created by humans
at work, with all the attendant constraints and limitations—and thus, like natural
language, it is also likely to be repetitive and predictable. We then proceed to ask
whether a) code can be usefully modeled by statistical language models and b) such
models can be leveraged to support software engineers.

"On the Naturalness of Software"
[Hindle et al., ICSE 2012. Most Influential Paper 2022]



In 2012...

® N-gram models trained on 14 million
tokens of code

e Substantial improvements to Eclipse IDE's
auto-complete

Cross Entropy (10-Fold

e Key differences:
o 2-4 orders of magnitude less data Xy
than modern LLMs
o Count-based n-gram vs. transformer

"On the Naturalness of Software"
[Hindle et al., ICSE 2012. Most Influential Paper 2022]

o
T T
3 4 5 6

Order of N-Grams




... and now

OpenAl's Codex [Evaluating Large Language Models Trained on Code. Chen et al., 2021]

e Transformer LMs trained on ~100 billion tokens of Python code from GitHub
e Typical benchmark: Python function generation:

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 11) ==>12
solution([3, 3, 3, 3, 31) ==9
solution([30, 13, 24, 321]) ==>0

nnn

return sum(1st[i] for i in range(0,len(lst)) if i % 2 == 0 and 1st[i]l % 2 == 1)



... and now

Pass Rate vs Model Size

0.7 —— pass@1 (T*=0.2)
pass@100 (T*=0.8)

0.6 -

0.4

Pass@k

0.3

0.2

0.1

0.0

b | LY | L LY | LY | L |
10° 10° 107 108 10° 1010
Non-embedding parameters

OpenAl's Codex [Evaluating Large Language Models Trained on Code. Chen et al., 2021]



... and now

Pass Rate vs Model Size

0.7 4 — pass@1 (T*=0.2) GPT-4
pass@100 (T*=0.8)
0.6 -
0.5 - codex (code-davinci-002), and
~ GPT-3.5
® 0.4
v
O 0.3 4 Copilot (code-cushman-001)
0.2 -
0.1 -
0.0 -

b | LY | L LY | LY | L |
10° 10° 107 108 10° 1010
Non-embedding parameters



Product

GitHub Copilot is generally

available to all developers

We're making GitHub Copilot, an Al pair programmer that suggests code in your editor,
generally available to all developers for $10 USD/month or $100 USD/year. It will also be free

to use for verified students and maintainers of popular open source projects.

With more than 1.2 million developers in our technical preview over the last 12
months, people who started using GitHub Copilot quickly told us it became an
indispensable part of their daily workflows. In files where it’s enabled, nearly 40% of
code is being written by GitHub Copilot in popular coding languages, like Python—
and we expect that to increase. That’s creating more time and space for developers to

focus on solving bigger problems and building even better software.

And now, you can put the power of GitHub Copilot to work in your preferred
environment with a free trial.



# rules are formatted like:
# AB => C
def parse_input(filename):
with open(filename) as f:
template, rules = f.read().split("\n\n")
for rule 1in rules:
\ rule_parts = kule.split(” = ")

Fig. 1. Copilot’s end-of-line suggestion appears at the
cursor without explicit invocation. The programmer
can press <tab> to accept it.

[Grounded Copilot, Barke et al OOPSLA 2023]



v import matplotlib A i 1
import matplotlib.pyplot as plt

ept Solutior
# Plot the first digits of the Fibonacci sequence as

. . . . 5
def read_first_digits_from_file(fil :

S LR IEE RS TReMar L COLISIdNC) 6  plt.hist(fib_first_digits, bins=range(0, 10))
74

8

1

2

3

4

5 v with open(filename) as file: ; % -
6 plt.title("Fibonacci sequence™)
7

8

plt.xlabel("First digit")
9 plt.ylabel("Number of occurrences")
= 10 plt.savefig("fib.png")

data = file.read().splitlines(Q)
return [int(line[@]) for line in data]

9 fib_first_digits = read_first_digits_from_file("fib.
10 inverse_first_digits = read_first_digits_from_file(

12 # Plot the first digits of the Fibonacci 13

13 # sequence as a histogram N, . . .

14 14 # Plot the first digits of the Fibonacci sequence as
15 15 plt.hist(fib_first_digits, bins=range(0, 10))

16 16 plt.title("Fibonacci sequence™)

17 17 plt.xlabel("First digit")

18 plt.ylabel("Number of occurrences")
19 plt.show(

\ccept Solutior
23 # Plot the first digits of the Fibonacci sequence as
24 plt.hist(fib_first_digits, bins=10, range=(0, 10))
25 plt.title("Fibonacci sequence")
26 plt.xlabel("First digit")
27 plt.ylabel("Number of occurrences")
28 plt.savefig("fib.png")

Fig. 2. The user writes an explicit comment prompt (lines 12-13 on the left) and invokes Copilot’s multi-
suggestion pane by pressing <ctrl> + <enter>. The pane, shown on the right, displays up to 10 unique
suggestions, which reflect slightly different ways to make a histogram with matplotlib.

[Grounded Copilot, Barke et al OOPSLA 2023]



Programming as Communication

Natural languages like English are rich, complex, and powerful. We begin
with the conjecture that most software... is created by humans at work,
communicating with the compiler, other developers, and themselves,

and thus, like natural language,

writing software 1s a form of contextual and interactive communication.
We then proceed to ask whether a) code can be usefully modeled by
statistical language models and b) such models can be leveraged to
support software engineers.




i i
https://www.youtube.com/watch?v=A2cebIXTBBc&t=180s



http://www.youtube.com/watch?v=A2ceblXTBBc&t=180

How Do You Program?

Do you use StackOverflow?

Do you write unit tests?

Do you pair program?

Do you use Copilot? What's been your experience?

What would you want in an Al-assisted programming system?



What is it like to program with artificial intelligence?

Advait Sarkar, Andrew D. Gordon, Carina Negreanu,
Christian Poelitz, Sruti Srinivasa Ragavan, Ben Zorn

PPIG (Psychology of Programming Interest Group) '22

https://arxiv.org/abs/2208.06213


https://arxiv.org/abs/2208.06213

Prior Conceptualizations of Al Programming

e Form and function
o Direct manipulation (WYSIWYG) works for text/images, but hard for
programs (which have multiple possible execution paths/possible futures)
o Programming by demonstration or examples. Macro recording, FlashFill,
program induction
o Declarative programming: Prolog and descendants. Formal specifications
e Activities (Green 1989)
o Authoring (write code, or examples, or specifications)
o Transcription (copy code with changes)
o Modification (refactor code)
e ML+ PL+ Software Engineering
o Treat software as modellable data, often using NLP



Survey of Usability Studies

e Vaithilingam et al. 2022
o No effects on task time; more failures with Copilot (wild goose chases)
o But people preferred Copilot anyway! Good starting point

e Ziegleretal.2022 (we will look at this next)
o Acceptance rate correlates with perceived productivity
o Highest acceptance rate on weekends & outside of working hours



Productivity Assessment of Neural Code Completion

Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam,
Alice Li, Andrew Rice, Devon Rifkin, Edward Aftandilian

MAPS (Intl. Symposium on Machine Programming) '22

https://arxiv.org/abs/2205.06537


https://arxiv.org/abs/2205.06537

Productivity Assessment of Neural Code Completion

(Ziegler '22)

e Astudyrun by GitHub
about use of Copilot and
its effect on productivity.

e Surveyed users of Copilot
and matched to their
Copilot telemetry data
over a 4 week period,
resulting in 2,000 users.

Think of the language
you have used the

most with OurTool. How -

proficient are you
in that language?

Which best describes

your programming -

experience?

Which of the following

best describes -

what you do?

What programming
languages do you

usually use?-

Choose up to three
from the list

0%

25%

5{i Y%

75‘%

100%

Beginner
Intermediate
Advanced

Student / Learning

0-2 Years Prof. Experience
3-5 Years Prof. Experience
6-10 Years Prof. Experience
11-15 Years Prof. Experience
16+ Years Prof. Experience

Student

Professional

Hobbyist
Consultant/Freelancer
Researcher

Other

Python
JavaScript
TypeScript
Java
Ruby

Go

Rust
Html
Other



Productivity Assessment of Neural Code Completion
(Ziegler '22)

e Productivity measures in the survey:
o Self-reported productivity ("l am more productive")
o Satisfaction, performance, communication, and efficiency (all
self-reported)
e |DE actions from telemetry:
o Completions shown
o Completions accepted

completion

average number of events
per survey user active hour

o How much completions B erer®”
were edited

o How long completions
persisted unchanged in the -

Ayunpoddo
pnejdwoo”

umoys
yajdwoo”

pajdacoe
uona|dwos”

editor



telemetry <

survey <

accepted_per_shown
accepted_per_opportunity
unchanged_600_per_opportunity
unchanged_300_per_opportunity
unchanged_30_per_opportunity
unchanged_120_per_opportunity
unchanged_300_per_active_hour
unchanged_600_per_active_hour
unchanged_120_per_active_hour
unchanged_30_per_active_hour
accepted_per_active_hour
accepted_char_per_active_hour
shown_per_active_hour
shown_per_opportunity

shown
unchanged_120_per_accepted
unchanged_30_per_accepted
unchanged_300_per_accepted
unchanged_600_per_accepted
mostly_unchanged_120_per_accepted
mostly_unchanged_300_per_accepted
mostly_unchanged_600_per_accepted
mostly_unchanged_30_per_accepted
learn_from

less_time_searching
unfamiliar_progress
repetitive_faster
less_effort_repetitive
better_code
less_frustrated
focus_satisfying
more_fulfilled
stay_in_flow

/

tasks_faster
aggregate_productivity

-

333

3000

2222

2 < cEcc

<0 o 3833E_ES

I_ EeccccC c [} :Onﬂnjnn

CEIJIIIJIIEF o n:’:’:’:-n:-:.

30000030 @ :’mmmm:mm

ass555as a,.b35385080
» 3555585385 28382843888
«Q Soe@@@3@ w228 0a0a0aalF889
@ QOOODOQD FoBai 2 o8
= - 7 g°S8Qcge 3293 488'_” lw'sT 8
] @ co Uy | z D wnN g
Q @ S0 | owaow 2 5380500088383 8
2 s oot 88888888 Lhlbbblhlobllloln s
° T 2283 UL CLLL 0000000339384
L 88 QU%B ToooooOT 2SS SSSSS20000Q
Tge3db S850 00000000 Il
B0 TaAISYP® _SSISSSSSS oo ows'sooo
O3l I T Z ™ @ 1 22822200000 BD 8
S8 ¢ Fasuginny'ylansly $2222322 2
Sﬁgazmpuua§388888888m3mmommmm8§§§§m
»a|5g=og3uogmmmmmmmm:g%%g&%%&éeegaz
?mggsﬁoagﬁZaEEEEEEEEg:ooooooo:::::g
35 S3as< SOTTTTDBOD = = SEESS
202 0@ar028@38808a0aaa5Z555555582EEZS

Spearman

correlation
1.00
0.75
0.50
0.25
0.00

/

Check correlation of
all metrics: from
telemetry and
survey

Telemetry events are
correlated; survey
are correlated

Of telemetry events,
accept rate is most
correlated with
perceived
productivity in
survey (o =0.24)



Productivity Assessment of Neural Code Completion
(Ziegler '22)

Daily and weekly patterns in acceptance rate in the US
(all users between 2022-01-15 and 2022-02-12)

26.0%-
® ACCGptance rates are 9
©
time-dependent 8 240 itz I
‘g_ _.‘“ ! ,..‘.'\.‘ * weekend
o . \ * working hours
®
22.0%-
20.0%-

Satu'rday Suﬁday Moﬁday TueédayWedn'esdayThuréday Friday
12:00 12:00 12:00 12:00 12:00 12:00 12:00
weekday and time (PST)



Experience Reports: Inputs and Outputs

e Writing promptsis hard
o "The comments used to prompt Copilot are just another very inefficient
programming language"
o "There is something valuable about being able to write at different levels of
abstraction"
e Copilotistrained on a mix of code ages and qualities
o "Copilot has made my code more verbose"
o "Copilot provided code for using older versions of [a library]"
o "Copilot showed me how to add structure in my code in unlikely places... | find
myself discovering new APl methods, either higher-level ones or ones that are

to develop a sentiment classifier for Twitter posts matching certain keywords remarks, “These kinds of
things are possible not just because of co pilot [sic] but also because we have awesome libraries which
have abstracted a lot of tough stuff.” This suggests that API design, not just for human developers but
also as a target for large language models, will be important in the near and mid-term future.



Human Goals and System Capabilities

e Gulf of Execution
o "How do | get the computer to do what | want"?
o Long been a problem in HCI, e.g. text interfaces don't show visual affordances in
the way that GUIs do (Brennan 1998)

e "Fuzzy abstraction problem"
o Special case of the Gulf of Execution problem
o “What can the system understand? What ‘syntax’ does it require?”
o LLMs handle a wide range of abstractions, but noisily
m Easy to start, hard to master


http://www.psychology.sunysb.edu/sbrennan-/papers/brenfuss.pdf

What About Cognitive Challenges?

In the context of programming activities, exploratory programming, where the goal is unknown or ill-
defined (Kery & Myers, 2017; Sarkar, 2016), does not fit the framing of fuzzy abstraction matching (or
indeed any of the variations of the gulf of execution problem). When the very notion of a crystallised
user intent is questioned, or when the design objective is for the system to influence the intent of the user
(as with much designerly and third-wave HCI work), the fundamental interaction questions change. One
obvious role the system can play in these scenarios is to help users refine their own concepts (Kulesza et
al., 2014) and decide what avenues to explore. Beyond noting that such activities exist, and fall outside
the framework we have proposed here, we will not explore them in greater detail in this paper.



Experience Reports: Shifting Priorities

® Surface forms can be deceptive

o “[..]it has proved to be very good at producing superficially appealing output that can
stand up not only to a quick scan, but to a moderately deep reading, but still falls apart
on a more careful reading. [...] it’s an uncanny valley type effect. [...] it’s almost the
most dangerous possible iteration of it, where it’s good enough to fool a human
functioning at anything other than the highest level of attentiveness but not good
enough to be correct all the time. See also, the dangers of almost self-driving cars;
either be self-driving or don’t but don’t expect halfway in between to work well.”

e Lesstime writing, more time debugging

o “I'find I spend my time reviewing Copilot suggestions (which are mostly wrong) rather
than thinking about code and actually doing the work.”

o  “lturned off auto-suggest and that made a huge difference. Now I'll use it when | know
I’m doing something repetitive that it’ll get easily, or if ’'m not 100% sure what | want
to do and I’'m curious what it suggests. This way | get the help without having it
interrupt my thoughts with its suggestions.”

e Copilotis great at writing boilerplate code



Inadequate Metaphors

e AsSearch
o Same: prompt-based, information asymmetry, several results, inexact solutions
o Different:
m Search has additional context: discussions, upvotes, images, ...
m Search has provenance: sources, dates, licenses,...
e AsCompilation
o E.g.:natural language “compiled to” source code
o Same: "program" at a higher level of abstraction
o Different:
m  With LLMs, we have to check the outputs!
m  With compilers, we don’t have to think about the lower-level (e.g. assembly).
e AsPair Programming
o  Driver (low-level, implementation) vs navigator (high-level, planning)
o Same: Al as driver
o Different:
m  With LLMs, you have to swap roles much more frequently (e.g., analyze driver’s
outputs, write some code on your own). No social pressure.



Recap

e LLMs(e.g.,viacopilot) expand the scope and quality of code automation

e New gulf of execution: how to get the system to do what | want?
o Difficult to prompt, introduces errors
o Shifts time allocation while programming (e.g. more debugging)
o Can be useful! (e.g., add structure, discover APl methods, repetitive tasks)

e Past metaphors do not capture the full experience of “programming with Al”
o Search
o Compilation
Pair programming



Open Issues

All of the above focused on professional programmers!
Issues for more novice users (based on Ragavan et al. 2022, a study on
language-augmented spreadsheets):

1.

2.

Intent specification: help users think computationally or prompt
unambiguously

Code correctness, quality, and (over)confidence: how to help novice
users check, and trust, code?

Code comprehension and maintenance: generate code that's more
contextual/user-tailored/lower cognitive load

Consequences of automation: what to do with saved time? How do
ecosystems change? What about data feedback loops?

No code, and the dilemma of the direct answer: do users even want
code, or just outputs?



Bridging the Abstraction Gap (Liu et al., CHI '23)

e Translate a user's utterance into a "grounded utterance" (fine-grained description)
that matches the system-produced code more closely.

e The user sees the code's output, and can edit the grounded utterance to fix it if the
output is wrong.

e Domain: making edits to tables via Pandas code.

Naturalistic utterances System actions
)

-
“Create a new column with the year” @

20141013T000000 221900 / \
20141209T000000 538000 ‘ \ Grounded utterances /

20150225T000000 180000
20141209T000000 604000 “Create column year, select column date,

select characters until character 4”
)



https://arxiv.org/abs/2304.06597

Bridging the Abstraction Gap (Liu et al., CHI '23)

In other words, our interface does not directly address “this is

‘tion. Our hypothesis is that exposure to such grounded examples
leads to more effective and confident use of a natural language

programming interface.
Just askea 1t to o~ (grounded apstraction matching). 1his ditteren-


https://arxiv.org/abs/2304.06597

Name

Joseph Acaba

Buzz Aldrin
Andrew Allen

Neil Armstrong
Richard Arnold

! Calculate average mission length @ [Mission

Space Missions Mission ]
Flight Length lLength |
- (h) S o
3307 STS-119 (Discovery), 1SS-31/32 3307: 2 1653.5!

' Result ]

(Soyuz) H | e T :

289 Gemini 12, Apollo 11 E Created 1 new column: A | 1_4_4.§_E
906 STS-46 (Atlantis), STS-62 302 G ‘ 302!
(Columbia), STS-75 (Columbia) Average Mission Length ) :

205 Gemini 8, Apollo 11 ; 102.5:
307 STS-119 (Discovery) 307; 3307 307,
5075' 2537.5;

Michael Barratt

John Bartoe
Ellen Baker

Loren Acton
Thomas Akers

William Anders

Lee
Archambault
Tater Achl

190 STS 51-F (Challenger)

686 STS-34 (Atlantis), STS-50 228.667. v 228.667:
(Columbia), STS-71 (Atlantis) : ;
190 STS 51-F (Challenger) B | (15w the system solved the task: @ 190!
STS-41 (Discovery), STS-49 203.5! = 203.5!
(Endeavor), STS-61 (Endeavor), : (j1i] create column Mission Length W ), 3
814 STS-79 (Atlantis) : N ]
147 Apollo 8 ' —~ 'colu‘mn Space Flight (_hr} divided by count 1475
STS-117 (Atlantis), STS-119 3 PASHESE R AEESIon . 319.5!
639 (Discovery) ]
STS-93 (Columbia), STS-100 The 3rd step is W ;

3
§
-
i
|
5075 155-19/20 (Soyuz), STS-133 |
i
H

(Discovery) . o ; 3
o -
 99R EET 302 | Hemyomer =

G Update & Go

‘ (1) create column Mission Length; (2)

column Space Flight (hr) divided by (count Go
"' from column Missions + 1)

Result

Created 1 new column:

Mission Length
1653.5
144.5

302

How the system solved the task:

di;1::l create column Mission Length W

—_ | column Space Flight (hr) divided by (count '’
(2 )| from column Missions + 1)

The 3rd step is w

Update & Go




Bridging the Abstraction Gap (Liu et al., CHI '23)

e Anecdotally, grounded utterances increased some users’ trust and confidence,
helped shaped mental models

In general, participants thought that the grounded utterances “made
it easy to check your work” (P4), highly “programmable” (P5), and
“providing opportunities for you to modify and iterate over it” (P26).

e Grounded utterances led people to adapt their language in different ways.

Participants picked up vocabularies and styles of utterance from
the grounded utterances, which would reliably get the system to
work according to their intent (7/12). This was particularly helpful
for non-programmers, for example, P13 recalled that through inter-


https://arxiv.org/abs/2304.06597

Grounded Copilot:
How Programmers Interact with Code-Generating Models

Sharddha Barke, Michael B. James, Nadia Polikarpova

OOPSLA (Object-oriented Programming, Systems, Languages, and Applications)
'23

https://arxiv.org/abs/2206.15000


https://arxiv.org/abs/2206.15000

Grounded Theory Analysis

e Glaser and Strauss 1967. A bottom-up strategy for qualitative research

O

©)

Exploratory; starts with a blank slate rather than existing hypotheses
Interleave analysis and data collection; use analysis to inform further experiments

e (Qualitative coding: tag raw data (transcripts, videos, etc) with tags that explain it

©)

Open coding (early stages): don't use a set of predefined codes, let researchers define as

they go
Axial coding: aggregate and analyze codes to identify conditions and strategies
Selective coding (later stages): linking together codes and notes into a theory (I think)

Are there risks to having the analysis shape the experiments?



Experimental Setup

e Analyze interactions of 20 participants with Copilot

o All were students or professionals in CS
o About half had prior Copilot experience

Process

o 1 hour of training, then 20-40 minute core task
o Notrequired to use Copilot, but encouraged

o  Talk through their interactions & have a semi-structured interview afterward

Task Language(s) Description Purpose

Chat Server Python/Rust Implement core “business logic” of | Investigate how Copilot aids in
a chat application, involving a small | interpreting and implementing a
state machine. human-language specification.

Chat Client Python/Rust Implement networking code for a chat | Probe how Copilot can aid with a
application, using a custom crypto- | custom APL
graphic API and standard but often
unfamiliar socket API.

Benford’s Law Rust & Python Use Rust to generate two sequences— | Collect data on a straightforward
the Fibonacci sequence and recip- | task (acceleration) and on an unfa-
rocals of sequential natural num- | miliar task (exploration).
bers; then plot these sequences using
Python’s matplotlib.

Advent of Code Python/Rust/ Implement a string manipulation task | How will programmers test their

Haskell/Java from a programming competition. Copilot-assisted code?




Two Mode Theory

e Acceleration: like autocomplete on steroids. Programmer knows what they
want; Copilot types it faster

# rules are formatted like:
# AB => C
def parse_input(filename):
with open(filename) as f:
template, rules = f.read().split("\n\n")
for rule in rules:
| rule_parts = fule.split(" => ")



Two Mode Theory

- Exploration: rely on Copilot to help plan actions, consider alternatives.

You, now | 1 author (You - .
v import matplotlib 1
import matplotlib.pyplot as plt

3 =======

Accept Solution
# Plot the first digits of the Fibonacci sequence as

- . . 5
def read_first_digits_from_file(filename):

7 ! 19t LleCfi ) 6  plt.hist(fib_first_digits, bins=range(d, 10))

7

8

1

2

3

4

5 w with open(filename) as file: . 2 ;
6 plt.title("Fibonacci sequence™)
74

8

plt.xlabel("First digit")
9 plt.ylabel("Number of occurrences")

data = file.read().splitlines()
return [int(line[@]) for line in data]

9 fib_first_digits = read_first_digits_from_file("fib. - 10 plt.savefig("fib.png")

10 inverse_first_digits = read_first_digits_from_file(' { i;

11 —

12 # Plot the first digits of the Fibonacci 13 L

13 # sequence as a histogram £ccept Solution: . 3 ;

14 14 # Plot the first digits of the Fibonacci sequence as
15 15 plt.hist(fib_first_digits, bins=range(@, 10))

16 16 plt.title("Fibonacci sequence")

17 17 plt.xlabel("First digit")

18 plt.ylabel("Number of occurrences")
19 plt.show()



Acceleration Mode

e Programmer is driving. Use acceleration after decomposing the task.
o Microtasks, e.g. parse the input, compute the output.
o Can specify microtasks with e.g. type signatures and descriptive names
o People can use acceleration even if they don't know the language or Copilot,

as long as they know the algorithm

e Copilot's suggestions should be short and focused.
o Longsuggestions break flow

e Validating suggestions: Pattern match for keywords; reject if they aren't present.



Exploration Mode: Overall

e Programmer lets Copilot drive, e.g. on novel tasks, or when they have less
experience, or when code doesn't work.
o Requires trust in the model, but can lead to automation bias:

“I was trying to get Copilot to do it for me, maybe I should have given smaller tasks to Copilot
and done the rest myself instead of depending entirely on Copilot”

e Preference for comment prompts (more control than code prompts).
o Comments are written especially for Copilot (and often deleted afterward!)
o Evidence of adaptation to the model: rephrase comment if Copilot gets it
wrong



Exploration Mode: Multiple Suggestions

e Willingness to spend time looking through solutions and combine them
“Imostly just do a deep dive on the first one it shows me, and if that differs from my expectation,
for example when it wasn’t directly invoking the handshake function, I specifically look for
other suggestions that are like the first one but do that other thing correctly”

e Substitutes for search engines, but need heuristics for trustworthiness

I “what would have been a StackOverflow search, Copilot pretty much gave that to me.”

“I'm pretty confident. I haven’t used this socket library, but it seems Copilot has seen this
pattern enough that, this is what I want.”

e Cognitive overload & anchoring biases

“It might be nice if it could highlight what it’s doing or which parts are different, just something
that gives me clues as to why I should pick one over the other”

Room for better interface design?



Exploration Mode: Validation Strategies

e Examination (most common), execution (REPL), static analysis (in Rust, etc),
documentation (in-browser, or on the web)
e More willing to accept and edit code than in acceleration mode

“If 'm in a mode where I want to rip apart a solution and use it as a template then I can look
at the multi-suggestion pane and select whichever suits my needs”

e Cognitive loadis anissue

“I don’t see the error immediately and unfortunately because this is generated, I don’t under-
stand it as well as I feel like I would’ve if I had written it. I find reading code that I didn’t
write to be a lot more difficult than reading code that I did write, so if there’s any chance that
Copilot is going to get it wrong, I'd rather just get it wrong myself because at least that way I
understand what’s going on much better”



»Y
Modé Switching M e ——— i —
19 HH mw-tp | W | Ht—mi o o (] v
18+ md - o o e - = [ o
17 - [ Clrm + - | nf B
16 - || | Ffon o oo | o s o | o el |
_ 15 - ] (e HHE o i e e o
2 14 1 B NN N (NN RN N I M
£ 131 L I e L LIl e o B B O B
312+ e —— NI IRl P (e ol cmm | w1
Ell- (R R - | | DN O | B [ BN N Ny
s 10 | O P D N i | om
-% 9 A {1l o4 | Ht—t i I m |
£ 81 - o e e | omf L LR L
S 71 | — 1 rmEm - . —
6 - o . - e
5 — [N | I IIII|- [ §
4 - - — o — (- e (i
ek [ L I I & R S S [ mf m
24 N | 1 — = - — i
1- | ] - S I [ B o - I
Percent of study completed
Acceleration Exploration Bl Accept Suggestion Lots of individual

I Acceleration - Prompting I Exploration - Prompting I Repair Suggestion

Il Acceleration - Validating Il Exploration - Validating I Reject Suggestion variation



Recommendations

e Betterinputs
o people don't understand what Codex can "see"
o people want a dedicated syntax, i.e. force using a particular function or data structure
o  Write code in a language you're familiar with; have Codex translate it

e Better outputs
o Awareness of the interaction mode: have the tool adjust to the user (e.g. shorter
suggestions)
m See Johnson et al. 2023, R-U-Sure for a tool for uncertainty-aware suggestion
truncation
o Tools for exploring multiple suggestions
m Glassman etal., 2015 OverCode
o Generate code with holes
m SeeR-U-Sure again
o  Always-on validation (continual testing, or display variable values)



https://arxiv.org/abs/2303.00732
https://dl.acm.org/doi/10.1145/2699751
https://arxiv.org/abs/2303.00732

Discussion

- How can we use interaction data to train and improve models?

- Is code the best medium for suggestions?

- How might the sample size impact results?

- As copilot improves, how might the use of copilot (e.g. for acceleration and
exploration) change?

- What kinds of personalization might be helpful? What research questions would
pursuing these translate to?



.Dlgacr:éfysslon

O

O

n's comments
Toward a first-person view: cognitive task analyses
Other desiderata: Enhancing creativity, prompting thinking,
supporting learning

e Some interesting looking papers (summaries from Austin Henley, pt 1, pt 2)

©)

Studying the Effect of Al Code Generators on Supporting Novice Learners in Introductory
Programming

“What It Wants Me To Say”: Bridging the Abstraction Gap Between End-User
Programmers and Code-Generating Large Language Models

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress



https://austinhenley.com/blog/uxaicoding.html
https://austinhenley.com/blog/futureofprogramming2023.html
https://dl.acm.org/doi/pdf/10.1145/3544548.3580919
https://dl.acm.org/doi/pdf/10.1145/3544548.3580919
https://dl.acm.org/doi/pdf/10.1145/3544548.3580817
https://dl.acm.org/doi/pdf/10.1145/3544548.3580817
https://dl.acm.org/doi/pdf/10.1145/3544548.3581516

