
Interacting with Code 
Generators

02/29/2023
CMU Neural Code Generation



In 2012...

"On the Naturalness of Software" 
[Hindle et al., ICSE 2012. Most Influential Paper 2022]

Natural languages like English are rich, complex, and powerful. We begin with the 
conjecture that most software is also natural, in the sense that it is created by humans 
at work, with all the attendant constraints and limitations—and thus, like natural 
language, it is also likely to be repetitive and predictable. We then proceed to ask 
whether a) code can be usefully modeled by statistical language models and b) such 
models can be leveraged to support software engineers.



In 2012...

● N-gram models trained on 14 million 

tokens of code

● Substantial improvements to Eclipse IDE's 

auto-complete

● Key differences:

○ 2-4 orders of magnitude less data 

than modern LLMs

○ Count-based n-gram vs. transformer

"On the Naturalness of Software" 
[Hindle et al., ICSE 2012. Most Influential Paper 2022]



... and now
OpenAI's Codex [Evaluating Large Language Models Trained on Code. Chen et al., 2021]

● Transformer LMs trained on ~100 billion tokens of Python code from GitHub 

● Typical benchmark: Python function generation:



... and now

OpenAI's Codex [Evaluating Large Language Models Trained on Code. Chen et al., 2021]



... and now

Copilot (code-cushman-001)

codex (code-davinci-002), and 
GPT-3.5

GPT-4 





[Grounded Copilot, Barke et al OOPSLA 2023]



[Grounded Copilot, Barke et al OOPSLA 2023]



Programming as Communication

Natural languages like English are rich, complex, and powerful. We begin 
with the conjecture that most software... is created by humans at work, 
with all the attendant constraints and limitations—
communicating with the compiler, other developers, and themselves,
and thus, like natural language, 
it is also likely to be repetitive and predictable. 
writing software is a form of contextual and interactive communication.
We then proceed to ask whether a) code can be usefully modeled by 
statistical language models and b) such models can be leveraged to 
support software engineers.



https://www.youtube.com/watch?v=A2ceblXTBBc&t=180s

http://www.youtube.com/watch?v=A2ceblXTBBc&t=180


How Do You Program?

Do you use StackOverflow?

Do you write unit tests?

Do you pair program?

Do you use Copilot? What's been your experience?

What would you want in an AI-assisted programming system?



What is it like to program with artificial intelligence?

Advait Sarkar, Andrew D. Gordon, Carina Negreanu, 
Christian Poelitz, Sruti Srinivasa Ragavan, Ben Zorn

PPIG (Psychology of Programming Interest Group) '22

https://arxiv.org/abs/2208.06213 

https://arxiv.org/abs/2208.06213


Prior Conceptualizations of AI Programming
● Form and function

○ Direct manipulation (WYSIWYG) works for text/images, but hard for 
programs (which have multiple possible execution paths/possible futures)

○ Programming by demonstration or examples. Macro recording, FlashFill, 
program induction

○ Declarative programming: Prolog and descendants. Formal specifications
● Activities (Green 1989)

○ Authoring (write code, or examples, or specifications)
○ Transcription (copy code with changes)
○ Modification (refactor code)

● ML + PL + Software Engineering
○ Treat software as modellable data, often using NLP



Survey of Usability Studies
● Vaithilingam et al. 2022

○ No effects on task time; more failures with Copilot (wild goose chases)
○ But people preferred Copilot anyway! Good starting point

● Ziegler et al. 2022 (we will look at this next)
○ Acceptance rate correlates with perceived productivity
○ Highest acceptance rate on weekends & outside of working hours



Productivity Assessment of Neural Code Completion

Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, 
Alice Li, Andrew Rice, Devon Rifkin, Edward Aftandilian

MAPS (Intl. Symposium on Machine Programming) '22

https://arxiv.org/abs/2205.06537 

https://arxiv.org/abs/2205.06537


Productivity Assessment of Neural Code Completion 
(Ziegler '22)

● A study run by GitHub 
about use of Copilot and 
its effect on productivity.

● Surveyed users of Copilot 
and matched to their 
Copilot telemetry data 
over a 4 week period, 
resulting in 2,000 users.



Productivity Assessment of Neural Code Completion 
(Ziegler '22)
● Productivity measures in the survey:

○ Self-reported productivity ("I am more productive")
○ Satisfaction, performance, communication, and efficiency (all 

self-reported)
● IDE actions from telemetry:

○ Completions shown
○ Completions accepted
○ How much completions

were edited
○ How long completions

persisted unchanged in the
editor



telemetry

survey

● Check correlation of 
all metrics: from 
telemetry and 
survey

● Telemetry events are 
correlated; survey 
are correlated

● Of telemetry events, 
accept rate is most 
correlated with 
perceived 
productivity in 
survey (𝜌 = 0.24)



Productivity Assessment of Neural Code Completion 
(Ziegler '22)

● Acceptance rates are 
time-dependent



Experience Reports: Inputs and Outputs
● Writing prompts is hard

○ "The comments used to prompt Copilot are just another very inefficient 
programming language"

○ "There is something valuable about being able to write at different levels of 
abstraction"

● Copilot is trained on a mix of code ages and qualities
○ "Copilot has made my code more verbose"
○ "Copilot provided code for using older versions of [a library]"
○ "Copilot showed me how to add structure in my code in unlikely places... I find 

myself discovering new API methods, either higher-level ones or ones that are 
better for my use case"



Human Goals and System Capabilities
● Gulf of Execution

○ "How do I get the computer to do what I want"?
○ Long been a problem in HCI, e.g. text interfaces don't show visual affordances in 

the way that GUIs do (Brennan 1998)

● "Fuzzy abstraction problem"
○ Special case of the Gulf of Execution problem
○ “What can the system understand? What ʻsyntaxʼ does it require?”
○ LLMs handle a wide range of abstractions, but noisily

■ Easy to start, hard to master

http://www.psychology.sunysb.edu/sbrennan-/papers/brenfuss.pdf


What About Cognitive Challenges?



Experience Reports: Shifting Priorities
● Surface forms can be deceptive

○ “[...] it has proved to be very good at producing superficially appealing output that can 
stand up not only to a quick scan, but to a moderately deep reading, but still falls apart 
on a more careful reading. [...] itʼs an uncanny valley type effect. [...] itʼs almost the 
most dangerous possible iteration of it, where itʼs good enough to fool a human 
functioning at anything other than the highest level of attentiveness but not good 
enough to be correct all the time. See also, the dangers of almost self-driving cars; 
either be self-driving or donʼt but donʼt expect halfway in between to work well.”

● Less time writing, more time debugging
○ “I find I spend my time reviewing Copilot suggestions (which are mostly wrong) rather 

than thinking about code and actually doing the work.”
○ “I turned off auto-suggest and that made a huge difference. Now Iʼll use it when I know 

Iʼm doing something repetitive that itʼll get easily, or if Iʼm not 100% sure what I want 
to do and Iʼm curious what it suggests. This way I get the help without having it 
interrupt my thoughts with its suggestions.”

● Copilot is great at writing boilerplate code



Inadequate Metaphors
● As Search

○ Same: prompt-based, information asymmetry, several results, inexact solutions
○ Different: 

■ Search has additional context: discussions, upvotes, images, …
■ Search has provenance: sources, dates, licenses,...

● As Compilation
○ E.g.: natural language “compiled to” source code
○ Same: "program" at a higher level of abstraction
○ Different: 

■ With LLMs, we have to check the outputs! 
■ With compilers, we donʼt have to think about the lower-level (e.g. assembly).

● As Pair Programming
○ Driver (low-level, implementation) vs navigator (high-level, planning)
○ Same: AI as driver
○ Different: 

■ With LLMs, you have to swap roles much more frequently (e.g., analyze driverʼs 
outputs, write some code on your own). No social pressure.



Recap
● LLMs (e.g., via copilot) expand the scope and quality of code automation

● New gulf of execution: how to get the system to do what I want?
○ Difficult to prompt, introduces errors
○ Shifts time allocation while programming (e.g. more debugging)
○ Can be useful! (e.g., add structure, discover API methods, repetitive tasks)

● Past metaphors do not capture the full experience of “programming with AI”
○ Search
○ Compilation

Pair programming



Open Issues
All of the above focused on professional programmers! 
Issues for more novice users (based on Ragavan et al. 2022, a study on 
language-augmented spreadsheets):

1. Intent specification: help users think computationally or prompt 
unambiguously 

2. Code correctness, quality, and (over)confidence: how to help novice 
users check, and trust, code?

3. Code comprehension and maintenance: generate code that's more 
contextual/user-tailored/lower cognitive load

4. Consequences of automation: what to do with saved time? How do 
ecosystems change? What about data feedback loops?

5. No code, and the dilemma of the direct answer: do users even want 
code, or just outputs?



Bridging the Abstraction Gap (Liu et al., CHI '23)

● Translate a user's utterance into a "grounded utterance" (fine-grained description) 
that matches the system-produced code more closely.

● The user sees the code's output, and can edit the grounded utterance to fix it if the 
output is wrong.

● Domain: making edits to tables via Pandas code.

https://arxiv.org/abs/2304.06597


Bridging the Abstraction Gap (Liu et al., CHI '23)

https://arxiv.org/abs/2304.06597




Bridging the Abstraction Gap (Liu et al., CHI '23)

● Showing users "grounded utterances" didn't affect their task completion rate or 
the time to complete the task.

● Anecdotally, grounded utterances increased some usersʼ trust and confidence, 
helped shaped mental models 

● Grounded utterances led people to adapt their language in different ways.

https://arxiv.org/abs/2304.06597


Grounded Copilot: 
How Programmers Interact with Code-Generating Models

Sharddha Barke, Michael B. James, Nadia Polikarpova

OOPSLA (Object-oriented Programming, Systems, Languages, and Applications) 
'23

https://arxiv.org/abs/2206.15000 

https://arxiv.org/abs/2206.15000


Grounded Theory Analysis

● Glaser and Strauss 1967. A bottom-up strategy for qualitative research
○ Exploratory; starts with a blank slate rather than existing hypotheses
○ Interleave analysis and data collection; use analysis to inform further experiments

● Qualitative coding: tag raw data (transcripts, videos, etc) with tags that explain it
○ Open coding (early stages): don't use a set of predefined codes, let researchers define as 

they go
○ Axial coding: aggregate and analyze codes to identify conditions and strategies
○ Selective coding (later stages): linking together codes and notes into a theory (I think)

Are there risks to having the analysis shape the experiments?



Experimental Setup
● Analyze interactions of 20 participants with Copilot

○ All were students or professionals in CS
○ About half had prior Copilot experience

● Process
○ 1 hour of training, then 20-40 minute core task
○ Not required to use Copilot, but encouraged
○ Talk through their interactions & have a semi-structured interview afterward



Two Mode Theory

● Acceleration: like autocomplete on steroids. Programmer knows what they 
want; Copilot types it faster



Two Mode Theory

- Exploration: rely on Copilot to help plan actions, consider alternatives.



Acceleration Mode
● Programmer is driving. Use acceleration after decomposing the task.

○ Microtasks, e.g. parse the input, compute the output.
○ Can specify microtasks with e.g. type signatures and descriptive names
○ People can use acceleration even if they don't know the language or Copilot, 

as long as they know the algorithm

● Copilot's suggestions should be short and focused.
○ Long suggestions break flow

● Validating suggestions: Pattern match for keywords; reject if they aren't present. 



Exploration Mode: Overall
● Programmer lets Copilot drive, e.g. on novel tasks, or when they have less 

experience, or when code doesn't work.
○ Requires trust in the model, but can lead to automation bias: 

● Preference for comment prompts (more control than code prompts).
○ Comments are written especially for Copilot (and often deleted afterward!)
○ Evidence of adaptation to the model: rephrase comment if Copilot gets it 

wrong



Exploration Mode: Multiple Suggestions
● Willingness to spend time looking through solutions and combine them

● Substitutes for search engines, but need heuristics for trustworthiness

● Cognitive overload & anchoring biases

Room for better interface design?



Exploration Mode: Validation Strategies
● Examination (most common), execution (REPL), static analysis (in Rust, etc), 

documentation (in-browser, or on the web)
● More willing to accept and edit code than in acceleration mode

● Cognitive load is an issue



Mode Switching

Lots of individual
 variation



Recommendations
● Better inputs

○ people don't understand what Codex can "see" 
○ people want a dedicated syntax, i.e. force using a particular function or data structure
○ Write code in a language you're familiar with; have Codex translate it

● Better outputs
○ Awareness of the interaction mode: have the tool adjust to the user (e.g. shorter 

suggestions)
■ See Johnson et al. 2023, R-U-Sure for a tool for uncertainty-aware suggestion 

truncation
○ Tools for exploring multiple suggestions

■ Glassman et al., 2015 OverCode
○ Generate code with holes

■ See R-U-Sure again
○ Always-on validation (continual testing, or display variable values)

https://arxiv.org/abs/2303.00732
https://dl.acm.org/doi/10.1145/2699751
https://arxiv.org/abs/2303.00732


Discussion
- How can we use interaction data to train and improve models?

- Is code the best medium for suggestions? 

- How might the sample size impact results?

- As copilot improves, how might the use of copilot (e.g. for acceleration and 
exploration) change?

- What kinds of personalization might be helpful? What research questions would 
pursuing these translate to?



Discussion● Carolyn's comments
○ Toward a first-person view: cognitive task analyses
○ Other desiderata: Enhancing creativity, prompting thinking, 

supporting learning
● Some interesting looking papers (summaries from Austin Henley, pt 1, pt 2)

○ Studying the Effect of AI Code Generators on Supporting Novice Learners in Introductory 
Programming

○ “What It Wants Me To Say”: Bridging the Abstraction Gap Between End-User 
Programmers and Code-Generating Large Language Models

○ VizProg: Identifying Misunderstandings By Visualizing Studentsʼ Coding Progress

https://austinhenley.com/blog/uxaicoding.html
https://austinhenley.com/blog/futureofprogramming2023.html
https://dl.acm.org/doi/pdf/10.1145/3544548.3580919
https://dl.acm.org/doi/pdf/10.1145/3544548.3580919
https://dl.acm.org/doi/pdf/10.1145/3544548.3580817
https://dl.acm.org/doi/pdf/10.1145/3544548.3580817
https://dl.acm.org/doi/pdf/10.1145/3544548.3581516

