Neural code generation: course overview

Instructors: Sean Welleck and Daniel Fried
TAs: Nikitha Rao and Zhiruo (Zora) Wang

LTI 11891, Carnegie Mellon University, Spring 2024
https://cmu-codegen.github.io/s2024
Sequence-to-sequence generation

General-purpose sequence generation
 • Summarize documents
 • Have a conversation
 • ...

ChatGPT
Code generation

- Write software
- Automatically fix bugs
- Help prove that code is correct
- Tool for reasoning
- Interact with an environment
- ...
Figure 1: GitHub Copilot (12.2023)
FunSearch: Making new discoveries in mathematical sciences using Large Language Models

14 DECEMBER 2023
Alhussein Fawzi and Bernardino Romera Paredes

Figure 2: FunSearch by Deepmind (12.2023)
Figure 3: The function discovered by FunSearch that results in the largest known cap set (size 512) in 8 dimensions.
Neural code generation

Code generation with deep learning methods, primarily neural language models.

Example: Codex.
Neural code generation – a brief history

Classical methods for program synthesis (specification \rightarrow program)
Neural code generation – a brief history

Classical methods for program synthesis (specification → program)

- **Sketch** [Solar-Lezama 2008]:

```plaintext
int bar(int x){
    int t = x*??;
    assert t == x+x;
    return t;
}
```

![Fig. 4. Simple illustration of the integer hole.](image)

- Specification: code with holes and test cases
- Output: fills in holes
- SAT-based search procedure
Neural code generation – a brief history

Classical methods for program synthesis (specification \rightarrow program)

- *FlashFill* [Gulwani 2011]:

 - Specification: (input, output) examples
 - Output: Excel string transformation
 - Domain-specific language and exhaustive search
Neural code generation – a brief history

Classical methods for program synthesis (specification \rightarrow program)

- Large search space over programs
- Difficult to model ‘informal’ specifications
Neural code generation – a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Programming languages, in theory, are complex, flexible and powerful, but, “natural” programs, the ones that real people actually write, are mostly simple and rather repetitive; thus they have usefully predictable statistical properties that can be captured in statistical language models and leveraged for software engineering tasks.

Figure 4: Hindle et al 2012
Neural code generation – a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

\[
p(a_4|a_1a_2a_3) = \frac{\text{count}(a_1a_2a_3a_4)}{\text{count}(a_1a_2a_3*)}
\]

Figure 5: Hindle et al 2012
Neural code generation – a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse
Neural code generation – a brief history

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Restrictive n-gram model; limited generation capability
Neural code generation – a brief history

Early neural models for code

- Latent predictor network [Ling et al 2016]: seq2seq architecture for code generation

![Class definition](image.png)

Figure 7: Generate code from a description of a card
Early neural models for code

- Latent predictor network [Ling et al 2016]: seq2seq architecture for code generation

![Figure 7: Generate code from a description of a card](image)

Figure 7: Generate code from a description of a card

Specialized architecture, trained for a specific dataset
Neural code generation – a brief history

Code generation with large language models (LLMs)

Evaluating Large Language Models Trained on Code

Mark Chen 1 Jerry Tworek 1 Heewoo Jun 1 Qiming Yuan 1 Henrique Ponde de Oliveira Pinto 1 Jared Kaplan 2 Harri Edwards 1 Yuri Burda 1 Nicholas Joseph 2 Greg Brockman 1 Alex Ray 1 Raul Puri 1 Gretchen Krueger 1 Michael Petrov 1 Heidy Khlaaf 1 Girish Sastry 1 Pamela Mishkin 1 Brooke Chan 1 Scott Gray 1 Nick Ryder 1 Mikhail Pavlov 1 Alethea Power 1 Lukasz Kaiser 1 Mohammad Bavarian 1 Clemens Winter 1 Philippe Tillet 1 Felipe Petroski Such 1 Dave Cummings 1 Matthias Plappert 1 Fotios Chantzis 1 Elizabeth Barnes 1 Ariel Herbert-Voss 1 William Hemberg Guss 1 Alex Nichol 1 Alex Paino 1 Nikolas Tezak 1 Jie Tang 1 Igor Babuschkin 1 Suchir Balaji 1 Shantanu Jain 1 William Saunders 1 Christopher Hesse 1 Andrew N. Carr 1 Jan Leike 1 Josh Achiam 1 Vedant Misra 1 Evan Morikawa 1 Alec Radford 1 Matthew Knight 1 Miles Brundage 1 Mira Murati 1 Katie Mayer 1 Peter Welinder 1 Bob McGrew 1 Dario Amodei 2 Sam McCandlish 2 Ilya Sutskever 1 Wojciech Zaremba 1

1. Introduction

Scalable sequence prediction models (Graves, 2014; Vaswani et al., 2017; Child et al., 2019) have become a general-purpose method for generation and representation learning in many domains, including natural language processing (Mikolov et al., 2013; Sutskever et al., 2014; Dai &
Program Synthesis with Large Language Models

Jacob Austin* Augustus Odena*
Maxwell Nye† Maarten Bosma Henryk Michalewski David Dohan Ellen Jiang Carrie Cai
Michael Terry Quoc Le Charles Sutton

Google Research
* denotes equal contribution
jaaustin@google.com, augustusodena@google.com

Abstract

This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and
Neural code generation – a brief history

Code generation with large language models (LLMs)

- Language models
- + general purpose architecture
- + diverse data
Neural code generation – a brief history

Code generation with large language models (LLMs)

Figure 8: Allows for natural language specifications [Austin et al 2021]
Neural code generation – a brief history

Code generation with large language models (LLMs)

Figure 9: Key property: **flexibility** to perform many tasks [Austin et al 2021]
Figure 10: Key property: improves by increasing scale [Chen et al 2021]
Neural code generation – after Codex

Figure 11: A lot of interest and development!
Why neural code generation?

- Many applications
- Large amount of data
- Structured, compositional
- Combines informal (e.g., intent) and formal (e.g. testable code)
- Rich tooling (e.g., static analysis, compilers, ...)
- Often complementary to LLMs (e.g. calculator)
- ...
Neural code generation

- Part I: Foundations
- Part II: Frontiers
Principles of neural language models as applied to code.

- Model: $p_{\theta}(y|x; \mathcal{D})$
 - x, y: input, output sequences
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset
Principles of neural language models as applied to code.

- **Model:** $p_\theta(y|x; \mathcal{D})$
 - x, y: input, output sequences
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset

- **Learning:**
 - $\arg\max_\theta \sum_{y \in \mathcal{D}} \log p_\theta(y)$
Principles of neural language models as applied to code.

- **Model:** $p_\theta(y|x; \mathcal{D})$
 - x, y: input, output sequences
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset

- **Learning:**
 - $\arg \max_\theta \sum_{y \in \mathcal{D}} \log p_\theta(y)$
Principles of neural language models as applied to code.

- **Model:** \(p_\theta(y|x; \mathcal{D}) \)
 - \(x, y \): input, output sequences
 - \(\theta \): parameters (e.g., transformer)
 - \(\mathcal{D} \): dataset

- **Learning:**
 - \(\arg \max_\theta \sum_{y \in \mathcal{D}} \log p_\theta(y) \)

- **Inference:**
 - \(y = f(p_\theta(\cdot|x)) \)
 - \(f \): e.g., sampling
Principles of neural language models as applied to code.

- **Model:** $p_\theta(y|x; \mathcal{D})$
 - x, y: input, output sequences
 - θ: parameters (e.g., transformer)
 - \mathcal{D}: dataset

- **Learning:**
 - $\arg \max_\theta \sum_{y \in \mathcal{D}} \log p_\theta(y)$

- **Inference:**
 - $y = f(p_\theta(\cdot|x))$
 - f: e.g., sampling

- **Evaluation**
Learning: how do we train language models for code generation?

- **Pretraining**: large-scale initial training based on scaling laws (1/18) and code objectives (1/23)
Learning: how do we train language models for code generation?

- **Pretraining**: large-scale initial training based on scaling laws (1/18) and code objectives (1/23)
- **Finetuning**: specializing the model for specific tasks and languages (1/25)
Learning: how do we train language models for code generation?

- **Pretraining**: large-scale initial training based on scaling laws (1/18) and code objectives (1/23)
- **Finetuning**: specializing the model for specific tasks and languages (1/25)
- **Learning from feedback**: improving the model with feedback on its outputs, such as execution results and language (1/30)
Evaluation: how good is our neural code generator?

• Code metrics and benchmarks (2/01, 2/06)
Part I: Foundations – *Data*

Data: what data should we train with? (2/08, 2/13)

- Data for *pretraining* and *domain-adaptation*
- *Synthetic* data
- Impact of data *quality*
Inference: how do we generate code with a trained language model?

- Algorithms that leverage execution, verification, and feedback (2/15, 2/20)
Neural code generation

• Part I: Foundations
 • Learning, Inference, Data, Evaluation
• Part II: Frontiers
• Part I: Foundations
• Part II: Frontiers
Code is **communicative** and code generators are **used by real people**

- **Pragmatic** aspects of code generation (2/29)
- **Programming with AI** (3/12) and dealing with **uncertainty** (3/14)
- **Guest lecture** by Sherry Wu (3/21)
Part II: Frontiers – Adaptability

Real-world code is long, exists in repositories unseen during training, and evolves over time. How do we adapt to these conditions?

• Methods for long-context generation and retrieval in code (3/19, 3/26)
Code as a medium for **reasoning** and **control** (4/02)

Figure 12: Code generation for robotics

Fig. 1: Given examples (via few-shot prompting), robots can use code-writing large language models (LLMs) to translate natural language commands into robot policy code which process **perception** outputs, parameterize **control** primitives, recursively generate code for **undefined** functions, and generalize to new tasks.
Some programming languages allow for proving that code is correct\(^1\)

- **Neural theorem proving** (4/04)
 - Use LLMs to make it easier to verify things
 - Use verifiable code for mathematical reasoning
- **Formally verified code synthesis** (4/09)
- Guest lecture by Zhangir Azerbayev (4/18)

\(^{1}\)E.g., Coq, Dafny, F*, Isabelle, Lean
• Programs are structured, testable, interpretable.
• These properties can be leveraged by large-scale neural program search to discover solutions to open problems (4/16)
Neural code generation

- Part I: *Foundations*
 - Learning, inference, data, evaluation
- Part II: *Frontiers*
 - Interaction, adaptability, reasoning, formal methods, science
Course structure, projects, and logistics
Course structure

- 6-unit version of the course
 - Attend lectures (with pre- and post-assignments)
 - Attend discussions (with pre- and post-assignments)
 - Lead a discussion with a team (via a presentation)

- 12-unit version of the course: all the above, plus:
 - A high-quality research project, in teams of 2–4.
 - Two checkpoint reports
 - Two structured project hours
 - Final presentation
 - Final report
Course structure

• 6-unit version of the course
 • Attend lectures (with pre- and post-assignments)
 • Attend discussions (with pre- and post-assignments)
 • Lead a discussion with a team (via a presentation)

• 12-unit version of the course: all the above, plus:
 • A high-quality research project, in teams of 2–4.
 • Two checkpoint reports
 • Two structured project hours
 • Final presentation
 • Final report
In a student-led discussion, 3 students present a (set of) papers on a theme. Choose how much to focus on each paper, but cover the following topics:

- **Content**: motivation, setting, methods, findings. What was surprising?
- **Reviewer**: role-play a conference reviewer. Score the paper, and justify.
- **Future**: Brainstorm future work ideas for discussion.
- **Reproducibility**: What code and data would you use to dig deeper?

Use slides, but a main goal is to facilitate a discussion!
6-Unit course structure: discussions

For presenters:

• Submit your slides before the day you present.
• We’ll grade based on the presentation and slides.
• It’s ok if you spark a long discussion and don’t get through all slides.
• Present one time during the course, for 33% of the 6-unit grade, or 16% of the 12-unit grade.
For presenters:

- Submit your slides before the day you present.
- We’ll grade based on the presentation and slides.
- It’s ok if you spark a long discussion and don’t get through all slides.
- Present one time during the course, for 33% of the 6-unit grade, or 16% of the 12-unit grade.

Sign-ups:

- Sign-up link coming after class.
- **Please sign up by Thursday end-of-day.** You can swap later if you find someone willing to.
- Extra credit (+2 out of 20 presentation points) for any team that presents on Thursday next week (1/25), on *finetuning for code*.
On days you’re not presenting (both lectures and discussions):

- Pre-assignment (33% of grade):
 - Short summary and ≥ 1 discussion questions for a paper.
 - Submit by 11:59pm the day **before** class.
 - 23 days, but we’ll grade out of 20.
On days you’re not presenting (both lectures and discussions):

• Pre-assignment (33% of grade):
 • Short summary and \geq 1 discussion questions for a paper.
 • Submit by 11:59pm the day before class.
 • 23 days, but we’ll grade out of 20.

• Post-assignment (33% of grade):
 • 2-3 sentences on what you found interesting.
 • Submit by 11:59pm the day of class.
 • 23 days, but we’ll grade out of 20.
For students taking the class for 12 units, all of the 6 unit requirements, and also a course project.

- Simulates doing a research project on a topic related to the course.
- Teams of 2-4 members
- Propose your own topic or pick a topic from our list
- Ends in a report and presentation that should be in the style of a workshop paper or the first draft of a conference paper.
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.
- **Spring break**: Mar 5th and 7th – Take time off!
- **Project hours 2 (5%)**: Mar 28th
- **Report 2 (25%)**: Mar 29th
 Baseline results and analysis, and a technique proposal.
- **Final presentations (10%)**: Apr 23rd and 25th
 In-class 15-20 minute presentations.
- **Final report (30%)**: Apr 29th
 Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.
- **Spring break**: Mar 5th and 7th – Take time off!
- **Project hours 2 (5%)**: Mar 28th

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.
- **Spring break**: Mar 5th and 7th – Take time off!
- **Project hours 2 (5%)**: Mar 28th
- **Report 2 (25%)**: Mar 29th
 Baseline results and analysis, and a technique proposal.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.
- **Spring break**: Mar 5th and 7th – Take time off!
- **Project hours 2 (5%)**: Mar 28th
- **Report 2 (25%)**: Mar 29th
 Baseline results and analysis, and a technique proposal.
- **Final presentations (10%)**: Apr 23rd and 25th
 In-class 15-20 minute presentations.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
12-Unit: Project timeline (tentative)

- **Team formation**: Jan 30th
- **Project hours 1 (5%)**: Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- **Report 1 (25%)**: Mar 1st
 Task proposal and data analysis; related work; baseline proposal.
- **Spring break**: Mar 5th and 7th – Take time off!
- **Project hours 2 (5%)**: Mar 28th
- **Report 2 (25%)**: Mar 29th
 Baseline results and analysis, and a technique proposal.
- **Final presentations (10%)**: Apr 23rd and 25th
 In-class 15-20 minute presentations.
- **Final report (30%)**: Apr 29th
 Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget across any of the written reports (Report 1, Report 2, or the Final Report).
• Introduce yourself! Name and program.
• What brings you to this class?
• Part I: Foundations
 • Learning, inference, data, evaluation
• Part II: Frontiers
 • Interaction, adaptability, reasoning, formal methods, science

Next meeting: lecture on pretraining and scaling laws for code