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Sequence-to-sequence generation

General-purpose sequence
generation

- Summarize documents

- Have a conversation




Code generation

Code generation

- Write software

- Automatically fix bugs

- Help prove that code is correct
- Tool for reasoning

- Interact with an environment



Code generation - applications

GITHUB COPILOT: CHAT ® parse_expenses.py X addresses.rb ® sentiments.ts

@ oivus coin sstatine

Hi @monalisa, how can | help you? parse_expenses (c )l
im powered by Al 50 surprises and mistakes are possible. Make sure T B ST e
to verify any generated code or suggestions, and share feedback so =D B ) L
L = Example expenses_string:
2023-01-62 ~34.01 USD
2025-01-03 2.5 DK
2023-01-603 -2.72 EUR

that we can learn and improve.

expenses = [

or line in expenses_string.splitlines():
f line.startswith("#")
date, value, currency = line.split (* *)
d( (datetine.d
float (value),
currency))

expenses

expenses_data = '''2023-01-02 ~34.01 USD
2023-01-03 2.59 DK
2023-01-03 -2.72 EUR

B Copllot

Figure 1: GitHub Copilot (12.2023)




Code generation - applications

RESEARCH

FunSearch: Making new discoveries in
mathematical sciences using Large
Language Models

Figure 2: FunSearch by Deepmind (12.2023)



Code generation - applications

def priority(el: tuplelint, ...],
< n: int) -> float:

score = n

in_el = 0

el_count = el.count(0)

if el_count =

score += 2

if el[1] el[-1]:
score *= 1.5

if el[2] == el[-2]:
score
if el[3] == el[-3]:
score *= 1.5
else:

if el[1] == el[-1]:
score *= 0.5
if el[2] == el[-2]:

score *= 0.5

elif in_el == el_count - 1:
score *= (
else:
score *= n * 0.5 ** in_el
in_el += 1
else:
score += 1

if el[1] == el[-1]:
score *#= 1.5

if el[2) == el[-2]:
score *= 1.5

return score

Figure 3: The function discovered by FunSearch that results in the largest
known cap set (size 512) in 8 dimensions.



Neural code generation

Code generation with deep learning methods, primarily
neural language models.

Example: Codex.



Neural code generation - a brief history

Classical methods for program synthesis (specification — program)



Neural code generation - a brief history

Classical methods for program synthesis (specification — program)

- SRetch [solar-Lezama 2008] :

int bar(int x){ int bar(int x){
int t = xx??; int t = xx2;
assert t == x+X; assert t == x+X;
return t; return t;

} }

Fig. 4. Simple illustration of the integer hole.

- Specification: code with holes and test cases
- Output: fills in holes
- SAT-based search procedure



Neural code generation - a brief history

Classical methods for program synthesis (specification — program)
- FlashFill (Gutwani 2011] ;

View Help  QpeninDesktopApp | ¢ Editing v =]

S|

Y

Filter Outline
c D E G

Full Name |Coruse Enrolled |Full Name YEar

Reema Panda_|lava 18-07-1997 1997
Joy Deep C,C++ 20-09-2000 2000
Meena Mangla [Excel, VBA 12-02-1999] 1999
Himanshu Bhar{Excel, VBA 12-04-1997[ 1097
Leena Paul__|c,Co+ 05-06-1990]_ 1990
Raj Sharma [Excel, VBA 12-12-2001) 2001

- Specification: (input, output) examples
- Output: Excel string transformation
- Domain-specific language and exhaustive search



Neural code generation - a brief history

Classical methods for program synthesis (specification — program)

- Large search space over programs
- Difficult to model ‘informal’ specifications



Neural code generation - a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Programminglanguages, intheory, are complex, flexible and
powerful, but, “natural” programs, the ones that real people
actually write, are mostly simple and rather repetitive; thus
they have usefully predictable statistical properties that can
be captured in statistical language models and leveraged for
software engineering tasks.

Figure 4: Hindle et al 2012



Neural code generation - a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

count(aiazagzay)

plaslarazas) = count(ayazaz¥)

Figure 5: Hindle et al 2012



Neural code generation - a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]
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Figure 6: Hindle et al 2012; language-model suggestions in Eclipse



Neural code generation - a brief history

Early language models for code

- N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]
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Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Restrictive n-gram model; limited generation capability



Neural code generation - a brief history

Early neural models for code

- Latent predictor network [Ling et al 2016] : S€q2seq architecture for
code generation

class MadderBomber(MinionCard): BLEU = 100.0
def __init__(self):
super().__init__("Madder Bomber", 5,
CHARACTER_CLASS.ALL, CARD_RARITY.RARE,
. S battlecry=Battlecry(Damage(1),
MaddeuBombLry CharacterSelector(players=BothPlayer(),
ey picker= RandomPicker(6))))

def create_minion(self, player):§
return Minion(5, 4)§

Figure 7: Generate code from a description of a card

1



Neural code generation - a brief histo

Early neural models for code

- Latent predictor network [Ling et al 2016] : S€q2seq architecture for
code generation

class MadderBomber(MinionCard): BLEU = 100.0
def __init__(self):
super().__init__("Madder Bomber", 5,
CHARACTER_CLASS.ALL, CARD_RARITY.RARE,
battlecry=Battlecry(Damage(1),
CharacterSelector(players=BothPlayer(),
picker= RandomPicker(6))))

def create_minion(self, player):§
return Minion(5, 4)§

Figure 7: Generate code from a description of a card

Specialized architecture, trained for a specific dataset

1



Neural code generation - a brief history

Code generation with large language models (LLMs)

Evaluating Large Language Models Trained on Code

Mark Chen ' Jerry Tworek *! Heewoo Jun®' Qiming Yuan ' Henrique Ponde de Oliveira Pinto "'
Jared Kaplan*? Harri Edwards' Yuri Burda' Nicholas Joseph? Greg Brockman' Alex Ray! Raul Puri!
Gretchen Krueger! Michael Petrov! Heidy Khlaaf® Girish Sastry! Pamela Mishkin! Brooke Chan !
Scott Gray ' Nick Ryder ! Mikhail Pavlov' Alethea Power ' Lukasz Kaiser! Mohammad Bavarian '
Clemens Winter ! Philippe Tillet! Felipe Petroski Such! Dave Cummings' Matthias Plappert !
Fotios Chantzis' Elizabeth Barnes' Ariel Herbert-Voss' William Hebgen Guss' Alex Nichol ! Alex Paino !
Nikolas Tezak ! Jie Tang! Igor Babuschkin' Suchir Balaji' Shantanu Jain' William Saunders'
Christopher Hesse! Andrew N. Carr' Jan Leike' Josh Achiam' Vedant Misra' Evan Morikawa '
Alec Radford! Matthew Knight' Miles Brundage' Mira Murati' Katie Mayer ' Peter Welinder '
Bob McGrew' Dario Amodei> Sam McCandlish? Tiya Sutskever ' Wojciech Zaremba '

Abstract 1. Introduction

Scalable sequence prediction models (Graves, 2014;
Vaswani et al., 2017; Child et al., 2019) have become a
general-purpose method for generation and representation
learning in many domains, including natural language pro-
cessing (Mikolov et al . 2013: Sutskever et al - 2014: Dai &

We introduce Codex, a GPT language model fine-
tuned on publicly available code from GitHub,
and study its Python code-writing capabilities.

JG] 14 Jul 2021



Neural code generation - a brief history

Code generation with large language models (LLMs)

Program Synthesis with Large Language Models

Jacob Austin® Augustus Odena”
Maxwell Nye!  Maarten Bosma  Henryk Michalewski ~ David Dohan  Ellen Jiang  Carrie Cai

Michael Terry QuocLe Charles Sutton

Google Research
* denotes equal contribution
jaaustin@google.com, augustusodena@google.com

Abstract

This paper explores the limits of the current generation of large language models for program synthesis in
general purpose programming languages. We evaluate a collection of such models (with between 244M
and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and

| 16 Aug 2021



Neural code generation - a brief history

Code generation with large language models (LLMs)

-+ Language models
- + general purpose architecture
- + diverse data



Neural code generation - a brief history

Code generation with large language models (LLMs)

Write a function to find the smallest missing element in
a sorted array. Your code should satisfy these tests:

prompt |

assert smallest_missing([0, 1, 2, 3, 4, 5, 6], 0, 6) == 7
assert smallest_missing([0, 1, 2, 6, 9, 11, 15], 0, 6) == 3
assert smallest_missing([1, 2, 3, 4, 6, 9, 11,15], 0, 7) ==

def smallest_missing(arr, n, m):
smallest = min(n, m)
foriinrange(n, m +1):

if arr[i] <= smallest:
smallest += 1
return smallest

model

Figure 8: Allows for natural language specifications [Austin et al 2021]



Neural code generation - a brief history

Code generation with large language models (LLMs)

| Ineed to write a Python function called

snake_to_camel. Here's a description: (a) human provides
| Write a function to convert a snake adescription
| case string to camel case string’.

user

(b) model asks for
few-shot examples

jopou

Can you give me an example?

1 assert (c) user provides an
4 | snake_to_camel(python_program’) == v
g i 5 -f example (can be

i_| ‘PythonProgram

automatic)

def snake_to_camel(str):
(d) model attempts to Titls)

str =str. 3
solve the problem (but
model fails tests) st =str.replace(_, it
return str
5 Close, but you need to replace the (e) human provides
+ 31 underscore with an empty string. feedback
def snake_to_camel(str):
(f) success (model str = str.title() §
passes tests) str = str.replace(’_, ") vosts pass 1 &

return str

Figure 12: An overview of the “flow” of the human-model
collaboration experiments. The human gives a description
of the desired program and then guides the model toward
the correct solution via dialog.

Figure 9: Key property: flexibility to perform many tasks [Austin et al 2021]



Neural code generation - a brief history

Code generation with large language models (LLMs)

Codex Loss Scaling

(eesh )03
5.92e+07

2 x10°

100 =

Test loss

6x107!
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10° 10° 107 108 10° 10t
Non-embedding parameters

Figure 10: Key property: improves by increasing scale [Chen et al 2021]
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Why neural code generation?

- Many applications

- Large amount of data

- Structured, compositional

- Combines informal (e.g, intent) and formal (e.g. testable code)
- Rich tooling (e.g., static analysis, compilers, ...)

- Often complementary to LLMs (e.g. calculator)



Neural code generation

- Part I: Foundations

- Part Il: Frontiers



Part I: Foundations

Principles of neural language models as applied to code.

- Model: py(y|x; D)
- X,V :input, output sequences
- 0 : parameters (e.g, transformer)
- D : dataset
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Part I: Foundations

Principles of neural language models as applied to code.

- Model: py(y|x; D)
- X,V :input, output sequences
- 0 : parameters (e.g, transformer)
- D: dataset
- Learning:
- arg maxgp Ey€D log pa(y)
- Inference:
=y = f(po(-x))
- f eg, sampling




Part I: Foundations

Principles of neural language models as applied to code.

- Model: py(y|x; D)
- X,V :input, output sequences
- 0 : parameters (e.g, transformer)
- D : dataset

- Learning:
- arg maxgp Ey€D log pa(y)
- Inference:

=y = f(po(-[x))
- f eg, sampling

- Evaluation




Part I: Foundations - Learning

Learning: how do we train language models for code generation?

- Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)



Part I: Foundations - Learning

Learning: how do we train language models for code generation?
- Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)

- Finetuning: specializing the model for specific tasks and
languages (1/25)



Part I: Foundations - Learning

Learning: how do we train language models for code generation?

- Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)

- Finetuning: specializing the model for specific tasks and
languages (1/25)

- Learning from feedback: improving the model with feedback on
its outputs, such as execution results and language (1/30)



Part I: Foundations - Evaluation

Evaluation: how good is our neural code generator?

- Code metrics and benchmarks (2/01, 2/06)

19



Part I: Foundations — Data

Data: what data should we train with? (2/08, 2/13)

- Data for pretraining and domain-adaptation
- Synthetic data
- Impact of data quality

20



Part |: Foundations - Inference

Inference: how do we generate code with a trained language model?

- Algorithms that leverage execution, verification, and feedback
(2/15, 2/20)

21



Neural code generation

- Part I: Foundations
- Learning, Inference, Data, Evaluation

- Part II: Frontiers

22



Neural code generation

- Part I: Foundations

- Part Il: Frontiers

23



Part Il: Frontiers — Human Interaction

Code is communicative and code generators are used by real people

- Pragmatic aspects of code generation (2/29)
- Programming with Al (3/12) and dealing with uncertainty (3/14)
- Guest lecture by Sherry Wu (3/21)

24



Part Il: Frontiers — Adaptability

Real-world code is long, exists in repositories unseen during training,
and evolves over time. How do we adapt to these conditions?

- Methods for long-context generation and retrieval in code
(3/19,3/26)

25



Part Il: Frontiers — Reasoning

Code as a medium for reasoning and control (4/02)

Large <--- Stack the blocks on the empty bowl. @
Language
Model APIs
Control APIs
l Policy Code
block_names = ("blocks")
bowl_names = « “bowls")

for bowl_name

wl_t
if is_empty(bowl_name):
empty_bowl = bowl_name
break

objs_to_stack = [empty_bowl] + block_names
stack_objects(objs_to_stack),

def is_empty(name):

for i in rm-«‘o(n objs - 1):
0bj0 = obj_names[i + 1]
obj1 = obj_names[i]

Tobj0, obj1) 2 oy

Fig. 1. Given examples (via few-shot prompting), robots can use code-writing
large language models (LLMs) to translate natural language commands into robot

policy code which process perception outputs, parameterize primitives,
recursively generate code for undefined functions, and generalize to new tasks.

Figure 12: Code generation for robotics
26



Part Il: Frontiers - Formal verification

Some programming languages allow for proving that code is correct’

- Neural theorem proving (4/04)

- Use LLMs to make it easier to verify things
- Use verifiable code for mathematical reasoning

- Formally verified code synthesis (4/09)
- Guest lecture by Zhangir Azerbayev (4/18)

TE.g, Coq, Dafny, F* Isabelle, Lean

27



Part Il: Frontiers - Al for science

- Programs are structured, testable, interpretable.

- These properties can be leveraged by large-scale neural
program search to discover solutions to open problems (4/16)

28



Neural code generation

- Part I: Foundations
- Learning, inference, data, evaluation
- Part II: Frontiers
- Interaction, adaptability, reasoning, formal methods, science

29



Course structure, projects, and
logistics




Course structure

+ 6-unit version of the course

- Attend lectures (with pre- and post-assignments)
- Attend discussions (with pre- and post-assignments)
- Lead a discussion with a team (via a presentation)

30



Course structure

- 6-unit version of the course
- Attend lectures (with pre- and post-assignments)
- Attend discussions (with pre- and post-assignments)
- Lead a discussion with a team (via a presentation)

- 12-unit version of the course: all the above, plus:
- A high-quality research project, in teams of 2-4.

- Two checkpoint reports

- Two structured project hours
- Final presentation

- Final report

30



6-Unit course structure: discussions

In a student-led discussion, 3 students present a (set of) papers on a
theme. Choose how much to focus on each paper, but cover the
following topics:

- Content: motivation, setting, methods, findings. What was
surprising?

- Reviewer: role-play a conference reviewer. Score the paper, and
justify.

- Future: Brainstorm future work ideas for discussion.

- Reproducibility: What code and data would you use to dig
deeper?

Use slides, but a main goal is to facilitate a discussion!

31



6-Unit course structure: discussions

For presenters:

- Submit your slides before the day you present.
- We'll grade based on the presentation and slides.

- It's ok if you spark a long discussion and don’t get through all
slides.

- Present one time during the course, for 33% of the 6-unit grade,
or 16% of the 12-unit grade.

32



6-Unit course structure: discussions

For presenters:

- Submit your slides before the day you present.
- We'll grade based on the presentation and slides.

- It's ok if you spark a long discussion and don’t get through all
slides.

- Present one time during the course, for 33% of the 6-unit grade,
or 16% of the 12-unit grade.
Sign-ups:

- Sign-up link coming after class.

- Please sign up by Thursday end-of-day. You can swap later if
you find someone willing to.

- Extra credit (+2 out of 20 presentation points) for any team that
presents on Thursday next week (1/25), on finetuning for code.

32



6-Unit course structure

On days you're not presenting (both lectures and discussions):
- Pre-assignment (33% of grade):

- Short summary and > 1 discussion questions for a paper.
- Submit by 11:59pm the day before class.
- 23 days, but we'll grade out of 20.

33



6-Unit course structure

On days you're not presenting (both lectures and discussions):
- Pre-assignment (33% of grade):

- Short summary and > 1 discussion questions for a paper.
- Submit by 11:59pm the day before class.
- 23 days, but we'll grade out of 20.

- Post-assignment (33% of grade):

- 2-3 sentences on what you found interesting.
- Submit by 11:59pm the day of class.
- 23 days, but we'll grade out of 20.

33



12-Unit: Course project

- For students taking the class for 12 units, all of the 6 unit
requirements, and also a course project.

- Simulates doing a research project on a topic related to the
course.

- Teams of 2-4 members
- Propose your own topic or pick a topic from our list

- Ends in a report and presentation that should be in the style of
a workshop paper or the first draft of a conference paper.

34



12-Unit: Project timeline (tentative)

- Team formation: Jan 30th

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final

Report). 35
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12-Unit: Project timeline (tentative)

- Team formation: Jan 30th
- Project hours 1(5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1(25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.
- Spring break: Mar 5th and 7th - Take time off!
- Project hours 2 (5%): Mar 28th
- Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.
- Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.
- Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final

Report). 35



Discussion

- Introduce yourself! Name and program.

- What brings you to this class?

36



Neural code generation

- Part I: Foundations
- Learning, inference, data, evaluation
- Part ll: Frontiers
- Interaction, adaptability, reasoning, formal methods, science

Next meeting: lecture on pretraining and scaling laws for code
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