
Neural code generation: course overview

Instructors: Sean Welleck and Daniel Fried
TAs: Nikitha Rao and Zhiruo (Zora) Wang

LTI 11891, Carnegie Mellon University, Spring 2024
https://cmu-codegen.github.io/s2024

https://cmu-codegen.github.io/s2024


Sequence-to-sequence generation

General-purpose sequence
generation
• Summarize documents
• Have a conversation
• ...

1



Code generation

Code generation

• Write software
• Automatically fix bugs
• Help prove that code is correct
• Tool for reasoning
• Interact with an environment
• ...

2



Code generation - applications

Figure 1: GitHub Copilot (12.2023) 3



Code generation - applications

Figure 2: FunSearch by Deepmind (12.2023)

4



Code generation - applications

Figure 3: The function discovered by FunSearch that results in the largest
known cap set (size 512) in 8 dimensions. 5



Neural code generation

Code generation with deep learning methods, primarily
neural language models.

Example: Codex.

6



Neural code generation – a brief history

Classical methods for program synthesis (specification→ program)

• Sketch [Solar-Lezama 2008] :

• Specification: code with holes and test cases
• Output: fills in holes
• SAT-based search procedure

7



Neural code generation – a brief history

Classical methods for program synthesis (specification→ program)

• Sketch [Solar-Lezama 2008] :

• Specification: code with holes and test cases
• Output: fills in holes
• SAT-based search procedure

7



Neural code generation – a brief history

Classical methods for program synthesis (specification→ program)

• FlashFill [Gulwani 2011] :

• Specification: (input, output) examples
• Output: Excel string transformation
• Domain-specific language and exhaustive search

8



Neural code generation – a brief history

Classical methods for program synthesis (specification→ program)

• Large search space over programs
• Difficult to model ‘informal’ specifications

9



Neural code generation – a brief history

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 4: Hindle et al 2012

Restrictive n-gram model; limited generation capability

10



Neural code generation – a brief history

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 5: Hindle et al 2012

Restrictive n-gram model; limited generation capability

10



Neural code generation – a brief history

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Restrictive n-gram model; limited generation capability

10



Neural code generation – a brief history

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Restrictive n-gram model; limited generation capability

10



Neural code generation – a brief history

Early neural models for code

• Latent predictor network [Ling et al 2016] : seq2seq architecture for
code generation

Figure 7: Generate code from a description of a card

Specialized architecture, trained for a specific dataset

11



Neural code generation – a brief history

Early neural models for code

• Latent predictor network [Ling et al 2016] : seq2seq architecture for
code generation

Figure 7: Generate code from a description of a card

Specialized architecture, trained for a specific dataset

11



Neural code generation – a brief history

Code generation with large language models (LLMs)

12



Neural code generation – a brief history

Code generation with large language models (LLMs)

12



Neural code generation – a brief history

Code generation with large language models (LLMs)

• Language models
• + general purpose architecture
• + diverse data

12



Neural code generation – a brief history

Code generation with large language models (LLMs)

Figure 8: Allows for natural language specifications [Austin et al 2021]

13



Neural code generation – a brief history

Code generation with large language models (LLMs)

Figure 9: Key property: flexibility to perform many tasks [Austin et al 2021]
13



Neural code generation – a brief history

Code generation with large language models (LLMs)

Figure 10: Key property: improves by increasing scale [Chen et al 2021]

13



Neural code generation – after Codex

Figure 11: A lot of interest and development!
14



Why neural code generation?

• Many applications
• Large amount of data
• Structured, compositional
• Combines informal (e.g., intent) and formal (e.g. testable code)
• Rich tooling (e.g., static analysis, compilers, …)
• Often complementary to LLMs (e.g. calculator)
• ...

15



Neural code generation

• Part I: Foundations
• Part II: Frontiers

16



Part I: Foundations

Principles of neural language models as applied to code.

• Model: pθ(y|x;D)

• x, y : input, output sequences
• θ : parameters (e.g., transformer)
• D : dataset

• Learning:
• argmaxθ

∑
y∈D log pθ(y)

• Inference:
• y = f(pθ(·|x))
• f: e.g., sampling

• Evaluation

17



Part I: Foundations

Principles of neural language models as applied to code.

• Model: pθ(y|x;D)

• x, y : input, output sequences
• θ : parameters (e.g., transformer)
• D : dataset

• Learning:
• argmaxθ

∑
y∈D log pθ(y)

• Inference:
• y = f(pθ(·|x))
• f: e.g., sampling

• Evaluation

17



Part I: Foundations

Principles of neural language models as applied to code.

• Model: pθ(y|x;D)

• x, y : input, output sequences
• θ : parameters (e.g., transformer)
• D : dataset

• Learning:
• argmaxθ

∑
y∈D log pθ(y)

• Inference:
• y = f(pθ(·|x))
• f: e.g., sampling

• Evaluation

17



Part I: Foundations

Principles of neural language models as applied to code.

• Model: pθ(y|x;D)

• x, y : input, output sequences
• θ : parameters (e.g., transformer)
• D : dataset

• Learning:
• argmaxθ

∑
y∈D log pθ(y)

• Inference:
• y = f(pθ(·|x))
• f: e.g., sampling

• Evaluation

17



Part I: Foundations

Principles of neural language models as applied to code.

• Model: pθ(y|x;D)

• x, y : input, output sequences
• θ : parameters (e.g., transformer)
• D : dataset

• Learning:
• argmaxθ

∑
y∈D log pθ(y)

• Inference:
• y = f(pθ(·|x))
• f: e.g., sampling

• Evaluation

17



Part I: Foundations – Learning

Learning: how do we train language models for code generation?

• Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)

• Finetuning: specializing the model for specific tasks and
languages (1/25)

• Learning from feedback: improving the model with feedback on
its outputs, such as execution results and language (1/30)

18



Part I: Foundations – Learning

Learning: how do we train language models for code generation?

• Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)

• Finetuning: specializing the model for specific tasks and
languages (1/25)

• Learning from feedback: improving the model with feedback on
its outputs, such as execution results and language (1/30)

18



Part I: Foundations – Learning

Learning: how do we train language models for code generation?

• Pretraining: large-scale initial training based on scaling laws
(1/18) and code objectives (1/23)

• Finetuning: specializing the model for specific tasks and
languages (1/25)

• Learning from feedback: improving the model with feedback on
its outputs, such as execution results and language (1/30)

18



Part I: Foundations – Evaluation

Evaluation: how good is our neural code generator?

• Code metrics and benchmarks (2/01, 2/06)

19



Part I: Foundations – Data

Data: what data should we train with? (2/08, 2/13)

• Data for pretraining and domain-adaptation
• Synthetic data
• Impact of data quality

20



Part I: Foundations – Inference

Inference: how do we generate code with a trained language model?

• Algorithms that leverage execution, verification, and feedback
(2/15, 2/20)

21



Neural code generation

• Part I: Foundations
• Learning, Inference, Data, Evaluation

• Part II: Frontiers

22



Neural code generation

• Part I: Foundations
• Part II: Frontiers

23



Part II: Frontiers – Human Interaction

Code is communicative and code generators are used by real people

• Pragmatic aspects of code generation (2/29)
• Programming with AI (3/12) and dealing with uncertainty (3/14)
• Guest lecture by Sherry Wu (3/21)

24



Part II: Frontiers – Adaptability

Real-world code is long, exists in repositories unseen during training,
and evolves over time. How do we adapt to these conditions?

• Methods for long-context generation and retrieval in code
(3/19, 3/26)

25



Part II: Frontiers – Reasoning

Code as a medium for reasoning and control (4/02)

Figure 12: Code generation for robotics
26



Part II: Frontiers – Formal verification

Some programming languages allow for proving that code is correct1

• Neural theorem proving (4/04)
• Use LLMs to make it easier to verify things
• Use verifiable code for mathematical reasoning

• Formally verified code synthesis (4/09)
• Guest lecture by Zhangir Azerbayev (4/18)

1E.g., Coq, Dafny, F*, Isabelle, Lean

27



Part II: Frontiers – AI for science

• Programs are structured, testable, interpretable.
• These properties can be leveraged by large-scale neural
program search to discover solutions to open problems (4/16)

28



Neural code generation

• Part I: Foundations
• Learning, inference, data, evaluation

• Part II: Frontiers
• Interaction, adaptability, reasoning, formal methods, science

29



Course structure, projects, and
logistics



Course structure

• 6-unit version of the course
• Attend lectures (with pre- and post-assignments)
• Attend discussions (with pre- and post-assignments)
• Lead a discussion with a team (via a presentation)

• 12-unit version of the course: all the above, plus:
• A high-quality research project, in teams of 2–4.

• Two checkpoint reports
• Two structured project hours
• Final presentation
• Final report

30



Course structure

• 6-unit version of the course
• Attend lectures (with pre- and post-assignments)
• Attend discussions (with pre- and post-assignments)
• Lead a discussion with a team (via a presentation)

• 12-unit version of the course: all the above, plus:
• A high-quality research project, in teams of 2–4.

• Two checkpoint reports
• Two structured project hours
• Final presentation
• Final report

30



6-Unit course structure: discussions

In a student-led discussion, 3 students present a (set of) papers on a
theme. Choose how much to focus on each paper, but cover the
following topics:

• Content: motivation, setting, methods, findings. What was
surprising?

• Reviewer: role-play a conference reviewer. Score the paper, and
justify.

• Future: Brainstorm future work ideas for discussion.
• Reproducibility: What code and data would you use to dig
deeper?

Use slides, but a main goal is to facilitate a discussion!

31



6-Unit course structure: discussions

For presenters:

• Submit your slides before the day you present.
• We’ll grade based on the presentation and slides.
• It’s ok if you spark a long discussion and don’t get through all
slides.

• Present one time during the course, for 33% of the 6-unit grade,
or 16% of the 12-unit grade.

Sign-ups:

• Sign-up link coming after class.
• Please sign up by Thursday end-of-day. You can swap later if
you find someone willing to.

• Extra credit (+2 out of 20 presentation points) for any team that
presents on Thursday next week (1/25), on finetuning for code.

32



6-Unit course structure: discussions

For presenters:

• Submit your slides before the day you present.
• We’ll grade based on the presentation and slides.
• It’s ok if you spark a long discussion and don’t get through all
slides.

• Present one time during the course, for 33% of the 6-unit grade,
or 16% of the 12-unit grade.

Sign-ups:

• Sign-up link coming after class.
• Please sign up by Thursday end-of-day. You can swap later if
you find someone willing to.

• Extra credit (+2 out of 20 presentation points) for any team that
presents on Thursday next week (1/25), on finetuning for code.

32



6-Unit course structure

On days you’re not presenting (both lectures and discussions):

• Pre-assignment (33% of grade):
• Short summary and ≥ 1 discussion questions for a paper.
• Submit by 11:59pm the day before class.
• 23 days, but we’ll grade out of 20.

• Post-assignment (33% of grade):
• 2-3 sentences on what you found interesting.
• Submit by 11:59pm the day of class.
• 23 days, but we’ll grade out of 20.

33



6-Unit course structure

On days you’re not presenting (both lectures and discussions):

• Pre-assignment (33% of grade):
• Short summary and ≥ 1 discussion questions for a paper.
• Submit by 11:59pm the day before class.
• 23 days, but we’ll grade out of 20.

• Post-assignment (33% of grade):
• 2-3 sentences on what you found interesting.
• Submit by 11:59pm the day of class.
• 23 days, but we’ll grade out of 20.

33



12-Unit: Course project

• For students taking the class for 12 units, all of the 6 unit
requirements, and also a course project.

• Simulates doing a research project on a topic related to the
course.

• Teams of 2-4 members
• Propose your own topic or pick a topic from our list
• Ends in a report and presentation that should be in the style of
a workshop paper or the first draft of a conference paper.

34



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th

• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!

• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th

• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



12-Unit: Project timeline (tentative)

• Team formation: Jan 30th
• Project hours 1 (5%): Feb 22nd
Meet with an instructor for 15-20 minutes, with a few slides.

• Report 1 (25%): Mar 1st
Task proposal and data analysis; related work; baseline proposal.

• Spring break: Mar 5th and 7th – Take time off!
• Project hours 2 (5%): Mar 28th
• Report 2 (25%): Mar 29th
Baseline results and analysis, and a technique proposal.

• Final presentations (10%): Apr 23rd and 25th
In-class 15-20 minute presentations.

• Final report (30%): Apr 29th
Results and analysis of your technique; future work proposal.

Your team will have a total of 5 late days which you can budget
across any of the written reports (Report 1, Report 2, or the Final
Report). 35



Discussion

• Introduce yourself! Name and program.
• What brings you to this class?

36



Neural code generation

• Part I: Foundations
• Learning, inference, data, evaluation

• Part II: Frontiers
• Interaction, adaptability, reasoning, formal methods, science

Next meeting: lecture on pretraining and scaling laws for code

37



References i

38


	Course structure, projects, and logistics

