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Evaluation:  
Metrics inspired by human-human interactions 
Quantitative and qualitative user modeling 

Design and implementation: 
The impact of UI 
The focus on user needs



3

How do you know a code gen model is good?
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Metrics 
evaluating code 
gen models
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How do you know a code gen model is useful?

A: define metrics more specific for usability tests!



Human-Human vs. Human-AI pAIr Programming
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Human-Human Pair Programming 

Two programmers work together on the 
same task using a single device. [Beck, 1999]

Driver: performs the coding 
Navigator: aids in planning, 
reviewing, debugging 

Human-AI pAIr Programming:  

Programmer and LLM work together at the 
same computer, solving the same task.
Copilot, an LLM-powered 
programming assistance tool, 
advertises itself as “your AI 
pair programmer” 

Similar to human-human co-programming, human-AI pair programming involves a lot 
of study and metrics that should capture the interaction aspect.

Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. "Is AI the better 
programming partner? Human-Human Pair Programming vs. Human-AI 

pAIr Programming." AIED 2023 workshop
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Metrics for 
human-AI 
interaction
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TL;DR: there are many metrics that we can 
adapt from human-human interactions! 

Multi-dimension reflection on quality 
Connection to real-world impact (exam) 
Reflection on real user benefit (teaching staff 
workload!)
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Example Usability Metric: Syntactic similarity metric
“While correctness captures high-value 
generations, programmers still rate code 
that fails unit tests as valuable if it 
reduces the overall effort needed to 
complete a coding task. Finally, we 
propose a hybrid metric that combines 
functional correctness and syntactic 
similarity and show that it achieves a 14% 
stronger correlation with value and can 
therefore better represent real-world gains 
when evaluating and comparing models.”

Dibia, Victor, et al. "Aligning Offline Metrics and Human Judgments of 
Value for Code Generation Models.” ACL 2023 
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How do you know a code gen model is useful for…
Researchers 
CS1 students 
Junior engineers 
Senior engineers 
…

A: Quantitative and qualitative modeling!
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Study humans quantitatively: User modeling on Clickstream

Mozannar, Hussein, et al. "Reading between the lines: Modeling user 
behavior and costs in AI-assisted programming." CHI 2024
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Study humans quantitatively: User modeling on clickstream

Can define and classify what happens in programmer actions (here idle times)
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Study humans quantitatively: User modeling on clickstream

Can uncover interesting patterns for each individual people!
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Human behavior in aggregation can show avg use patterns

“In a study with 21 programmers, we saw that the most time intensive state is verifying suggestions, and 
Copilot related states (yellow highlight) occupy on average 51% of task time.”
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Clickstream can uncover interesting patterns!
“Copilot often forces programmer to accept a sequence of suggestions in a row, teasing them to show the 
full function/class body, which makes them verify suggestion after accepting them (rather than before)”
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Also reveal issues in metrics

Human-human – Variance in metrics! 
Time and accomplishment? twice the duration, the person-hours required

Human-AI – Too simplified metrics? 
E.g. the number of lines of added code – the nature of interaction with Copilot (tab to accept suggestions) 
is a big factor!
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Clickstream can help with design!

Mozannar, Hussein, et al. "When to show a suggestion? integrating 
human feedback in ai-assisted programming." AAAI 2024

“We propose a utility theory framework, 
which models [when AI should make 
intervention to] programmers and decides 
which suggestions to display.” 

…models that predict suggestion acceptance 
to selectively hide suggestions reducing both 
latency and programmer verification time.
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Once have some data, can simulate humans

Mozannar, Hussein, et al. "Simulating Iterative 
Human-AI Interaction in Programming with 
LLMs." NeurIPS 2023 Workshop
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Understand humans qualitatively: Surveys

Liang, Jenny T., Chenyang Yang, and Brad A. Myers. "A large-scale survey on the 
usability of ai programming assistants: Successes and challenges." ICSE 2024

“To understand developers’ practices while using these tools 
and the important usability challenges they face, we 
administered a survey to a large population of developers and 
received responses from a diverse set of 410 developers.”
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Understand humans qualitatively: Surveys

Repetitive code (boilerplate code, repetitive endpoints for crud, etc.) 
Code with simple logic 
Autocomplete (“acceleration”) 
Quality assurance (e.g. log messages, test cases) 
Proof-of-concepts (generate multiple implementations for a given problem) 
Learning (of new libraries or programming languages) 
Recalling (Find syntax they were familiar with but couldn’t recall) 
Efficiency 
Documentation 
Code consistency (e.g., indentation, quickly referencing sources created within the project)
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Why humans use or not use programming tools
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Bonus: Taxonomy of software requirements
Functional requirements characterize units of functionality that we may want to group 
into coarser-grained functionalities that the software should support.  

Non-functional requirements

More here: https://www.cs.cmu.edu/~ckaestne/
17313/2018/20180913-requirements-solicitation-and-doc.pdf

https://www.cs.cmu.edu/~ckaestne/17313/2018/20180913-requirements-solicitation-and-doc.pdf
https://www.cs.cmu.edu/~ckaestne/17313/2018/20180913-requirements-solicitation-and-doc.pdf
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Some other findings you might find interesting…

Engineers’ prompting / input strategies 
(ranked by frequency) 
Clear explanations, through “doctoring 
comments” and test cases 
No strategy 
Adding code 
Follow conventions (e.g., well-named variables) 
Break down instructions 
Existing code context (“use it at advanced stages 
of project, for it to give better suggestions based 
on my project’s history”) 
Prompt engineering

User-envisioned additional functionalities 
Better understanding of code context. e.g., Code from the 
same workspace; Don’t use deprecated API 
Tool configuration: Have configurable parameters for 
suggestion frequency, distinguish[ing when to do] long 
code generation and short code [generation] 
Natural language interactions 
Code analysis, add annotation for functional and syntactic 
correctness 
Explanations, e.g., link directly to documentation 
More suggestions 
Account for non-functional requirements 
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How do you know a code gen model is useful?
More metrics from more traditional human-human studies 
Analyze actual human interactions 
Hear what they have to say
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How do you make a code gen model useful?



Again first some human-human reference…
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Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. "Is AI the better 
programming partner? Human-Human Pair Programming vs. Human-AI 

pAIr Programming." AIED 2023 workshop



Human-Human challenges to opportunities
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How do you make a code gen model useful?

A: Design and iterate on the interface
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Communication via UI: Inline explanations

Yan, Litao, et al. "Ivie: Lightweight Anchored 
Explanations of Just-Generated Code." CHI 2024
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Communication via UI: Inline explanations
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Communication via UI: Inline explanations
Usually no need to be super sophisticated methods but just clean communication!
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How do you make a code gen model useful?

A: Design and iterate for specific use cases (case studies!)



Design for Use Case: Addressing Code Review
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Alexander Frömmgen, et al. "Resolving Code Review Comments with Machine Learning." ICSE 2024



Design for Use Case: Addressing Code Review
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An example of a review comment in Critique. The 
reviewer asked for a defensive coding practice. The 
author addressed the comment by updating their 
changelist with a new review snapshot. The update is 
shown via colors: green for added text and red for 
removed. The author responded to the comment with 
“Done.” and marked it “Resolved”.



Design for Use Case: Addressing Code Review
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“We started by training a model that predicts code edits needed to address reviewer comments. The model is pre-
trained on various coding tasks and related developer activities (e.g., renaming a variable, repairing a broken build, 
editing a file). It’s then fine-tuned for this specific task with reviewed code changes, the reviewer comments, and the 
edits the author performed to address those comments.”



Model quality: In-product measurements
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Offline evaluation, by computing the recall@X metric described above over a held-out 
test dataset 

Online evaluation / user feedback, by measuring the number of code-review comments 
produced during day-to-day business, the number of predictions the model made, the 
number of those predictions that were previewed, and of those how many were applied, or 
received thumbs up/thumbs down.  
All types of such evaluation are meant to detect an increase in developer productivity, but 
act as easier-tomeasure proxies of that measure. 
Acceptance rate: the fraction of comments resolved by an accepted ML suggestion 
Discoverability: the fraction of surfaced suggestions that were previewed by system users.



Filters between model and usage
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“For every new reviewer comment, 
we generate the model input in the 
same format that is used for training, 
query the model, and generate the 
suggested code edit. If the model is 
confident in the prediction and a 
few additional heuristics are 
satisfied, we send the suggested 
edit to downstream systems.”



The impact of UIs
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Original: A separate, asynchronous analyzer queried 
the model and produced the suggested edit as an 
independent code finding, in a separate annotation. 

Pitfall: decoupled comment and suggested edit. 
-> Duplication of information, wasted precious UI 
real-estate, and confused the prevailing visual 
language of review comments.

Revision: combine the two sources of information, by 
placing a “Show ML edit” in the same box where the 
reviewer comment appears 

Result: improved discoverability considerably



The impact of UIs
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Pitfall: click to view. Since code shepherding (i.e., 
editing the changelist in light of the reviewer 
comments) takes a significant fraction of developers’ 
time—one study at Google measured the median to 
be around 60 minutes [7]—efficiency in addressing 
comments is important 

Revision: Showing the suggested edit immediately 
next to the reviewer comment, rather than requiring 
a click of the “Show ML edit” button. 

Result: ML-suggested edit discoverability for the 
changelist author improved.



The impact of UIs
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Original: Just show suggested revision to the code author but 
not the reviewer. 

Pitfall: decoupled reviewer from ML assistant. 
Reviewers who were uncomfortable having an ML model 
“interpret” their comment into a suggested edit, and would 
prefer to preview the suggestion before providing it to the code 
author. “the pedagogical function of code review — It is often 
how new engineers are trained on local conventions and 
programming discipline.” 

Revision: The reviewer is shown the ML-suggested edit as they 
type their comment. The reviewer can decide to reject the 
suggested edit (in which case the author will only see the 
reviewer’s comment). 

Result: Many incorrect suggestions are pre-filtered 
out; Can use a less lower auto-filter because human 
filter is in the loop! 

The location of the comment and the mention 
of “check” and “null” were sufficient to trigger 
the assistant to suggest the intended edit.



The impact of UIs
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Original: Reviewers are typically pressed for time, and may 
move on quickly from comment to comment. In an attempt to 
reduce back-end prediction load, and to avoid showing 
reviewers suggested edits before they have typed enough of 
their comment, we set the triggering delay between when the 
reviewer starts typing a comment and when a prediction is 
requested to 1500ms.  

Pitfall: slow-to-predict edits.; Between this triggering delay, 
and the additive prediction latency of the model, many 
predictions “missed” the reviewer, who had already moved on.  

Revision: Further reduced the triggering delay to 500ms. and 
improved the prediction latency through considerable 
engineering effort. 

Result: number of suggested edits previewed by reviewers 
increased by 12%, and the acceptance rate of ML-suggested 
edits by authors improved by 18%.



The impact of UIs
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Original: Our original design of the UI assumed that the 
changelist author and reviewers operate in lock step: one stops 
when the other starts working on the changelist. 

Pitfall: code review is serialized.; This is not how code review 
operates in practice. Sometimes the changelist is edited by the 
author as the reviewer is reviewing, or perhaps the reviewer 
thinks of a new comment after they have passed the bulk of 
their review to the author, and sometimes the reviewer attaches 
a comment to an older review snapshot of the changelist. All in 
all, this means that sometimes even an MLsuggested edit that 
the author wishes to accept is incompatible with the current 
state of the code.  

Revision: detect those cases, and opening a three-way merge 
window (Figure 10) for the author to resolve any merge 
conflicts. 

Result: the number of accepted suggested edits increased.



Some takeaways
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When a model is in a specific use case it usually means blending into existing workflows 

Test-in-product is not the most ideal but usually quite useful 

There will be metrics not relevant to model, but just relevant to usability (e.g. discoverability) 

Little things like latency in suggestion can easily change usability 

UI iteration is a BIG aspect 

Need to consider all users touching the system (reviewers, and authors).  

Also consider the original objective of the task (a bit of education and training going on!)
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Case Study: LLM for CS Education
When AI writes code Humans might do more debugging!

Qianou Ma, et al. "How to Teach Programming in the AI Era? 
Using LLMs as a Teachable Agent for Debugging.” ICSE 2024
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LO1: Comprehensive 
hypothesis construction

LO2: Accurate hypothesis 
construction

Learning Objectives Students’ primary tasks

Make test suite more complete

Debug. Process Model

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis

Verify hypothesis

Correctly map explanations to bugs

Write test suite

Add test case

Evaluate expl.

Select expl.

HypoCompass

Student flow1

Bug fixes

Bug explanations

LLM generation2

Test category hint

Buggy codes

Test case hint

HypoCompass: Learning Theory Inspired Design

Explicit & deliberate training just on debugging, by off-loading other necessary sub-
tasks to LLMs (e.g., writing the bug, correcting the bug, etc.)
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HypoCompass: Effectiveness Python

Python

Question 2 Select all that apply.

Imagine a solution to this problem that fails on all of these following test case(s) because of the
same bug. What could the bug be?

assert(num_smaller([10, 10, 10, 20, 30], 10) == 0)
assert(num_smaller([10, 20, 20, 30, 30], 20) == 1)
assert(num_smaller([10, 10, 20, 30, 30], 30) == 3)

Select all that apply.

A. The buggy codes may have overlooked duplicated elements in seq
B. The buggy codes may have overlooked x when it is the smallest element in seq
C. The buggy codes may only handle the case where x is not in seq
D. The buggy codes may only handle the case where x is already in seq

Answer:

Question 3.1 Select one answer.

Given this current test suite, which test case out of the pair, if added to the test suite, can cover
additional aspects of the problem and make the testing more comprehensive? In other words,
which test case is more likely to reveal an issue or bug in a code solution that this current test
suite would not reveal?

assert(num_smaller([10, 10, 10, 20, 30], 10) == 0)
assert(num_smaller([10, 20, 20, 30, 30], 20) == 1)
assert(num_smaller([10, 10, 20, 30, 30], 30) == 3)

A. assert(num_smaller([1, 3, 5, 7], 5) == 2)
B. assert(num_smaller([10, 10, 20, 30, 30], 40) == 5)

Answer:

Python

Question 7 Select one answer.

Test case 2: assert(remove_extras_code2([1, 1, 2, 3]) == [1, 2, 3])
Actual behavior: 'TypeError' 'int' object is not iterable.

1 def remove_extras_code2(lst):
2 new_lst = []
3 for i in lst:
4 if i == lst[i+1]:
5 continue
6 else:
7 new_lst += i
8 return new_lst

What's the bug exposed by this test case?

A. The bug occurs because the loop variable i is mistakenly used as both the element and
index of the list. This leads to incorrect comparisons and triggers a TypeError in
lst[i+1] because i is an element of the list, not an index.

B. The bug is caused by not initializing the new_lst properly. The code fails to explicitly
assign an empty list to new_lst, so when concatenating elements to new_lst using the
+= operator, a TypeError occurs because new_lst is not iterable.

C. The bug is due to an incorrect conditional statement. The code incorrectly compares i
with lst[i+1] instead of comparing adjacent elements of the list, which triggers
TypeError when trying to compare an integer i with a list element.

D. The bug occurs because the code incorrectly assumes that i is iterable when
concatenating it to new_lst with the += operator. In this case, i is an integer, which is
not iterable, and it causes a TypeError.

Answer:

HypoCompass consistently generates high-quality 
training materials: 90% success rate + only take 15 
minutes to label and edit (reduce instructor effort!) 

HypoCompass brings learning gain: In a pre-to-post 
test setup, 10 novices improved their performances by 
17%, with a reduced completion time of 13%.

It is possible to eventually train students 
to be better at debugging!
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LO1: Comprehensive 
hypothesis construction

LO2: Accurate hypothesis 
construction

Learning Objectives Students’ primary tasks

Make test suite more complete

Debug. Process Model

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis

Verify hypothesis

Correctly map explanations to bugs

Write test suite

Add test case

Evaluate expl.

Select expl.

HypoCompass

Student flow1

HypoCompass: Learning Theory Inspired Design

Explicit & deliberate training just on debugging, by off-loading other necessary sub-
tasks to LLMs (e.g., writing the bug, correcting the bug, etc.)

Bug fixes

Bug explanations

LLM generation2

Test category hint

Buggy codes

Test case hint

There will be skills that can be offload 
to LLMs. What skills to offload and, in 

turn, what skills to train humans on, 
become an interesting HCI question.

 Explicit & deliberate training just on 
debugging, by off-loading other 
necessary sub-tasks to LLMs (e.g., writing 
the bug, correcting the bug, etc.)
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Task formation in HypoCompass (bug fixing)
LLM task: To edit the buggy code according to the fix instruction without over- or under- fix

You fix bugs in Python code closely following the instructions.
Original code: {buggy_code}; 
Code modification: {explanation} 
Modified code:

def first_num_greater_than (numbers_list, key):
  for i in range(len(numbers_list)):

    if numbers_list[i] <= key:
      return num

    else:
      return None

“Change the comparison line to 
be larger than key.”

def first_num_greater_than (numbers_list, key):
  for i in range(len(numbers_list)):

    if numbers_list[i] > key:
      return num

     return None

Over-fixing, because LLM wants to 
continue to generate correct code!
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Task formation in HypoCompass (bug fixing)
LLM task: To edit the buggy code according to the fix instruction without over- or under- fix

You fix bugs in Python code closely following the instructions.
Original code: {buggy_code}; 
Code modification: {explanation} 

Translate the statement into actual, minimal code change in this format:
{original code snippet: ""copy the lines of code that need editing""
-> edited code snippet: ""write the edited code snippet”"}

def first_num_greater_than (numbers_list, key):
  for i in range(len(numbers_list)):

    if numbers_list[i] <= key:
      return num

    else:
      return None

“Change the comparison line to 
be larger than key.”

numbers_list[i] <= key → numbers_list[i] > key
Task formation helps avoid competing tasks 

of code editing and code completion!



That’s all for today!!
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