
1

Code Generation, guest lecture
Human Interactions with Code Gen Models

Sherry Tongshuang Wu
HCII/LTI
@tongshuangwu / sherryw@cs.cmu.edu

Outline

2

Evaluation:
Metrics inspired by human-human interactions
Quantitative and qualitative user modeling

Design and implementation:
The impact of UI
The focus on user needs

3

How do you know a code gen model is good?

4

Metrics
evaluating code
gen models

5

How do you know a code gen model is useful?

A: define metrics more specific for usability tests!

Human-Human vs. Human-AI pAIr Programming

6

Human-Human Pair Programming

Two programmers work together on the
same task using a single device. [Beck, 1999]

Driver: performs the coding
Navigator: aids in planning,
reviewing, debugging

Human-AI pAIr Programming:

Programmer and LLM work together at the
same computer, solving the same task.
Copilot, an LLM-powered
programming assistance tool,
advertises itself as “your AI
pair programmer”

Similar to human-human co-programming, human-AI pair programming involves a lot
of study and metrics that should capture the interaction aspect.

Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. "Is AI the better
programming partner? Human-Human Pair Programming vs. Human-AI

pAIr Programming." AIED 2023 workshop

7

Metrics for
human-AI
interaction

8

TL;DR: there are many metrics that we can
adapt from human-human interactions!

Multi-dimension reflection on quality
Connection to real-world impact (exam)
Reflection on real user benefit (teaching staff
workload!)

9

Example Usability Metric: Syntactic similarity metric
“While correctness captures high-value
generations, programmers still rate code
that fails unit tests as valuable if it
reduces the overall effort needed to
complete a coding task. Finally, we
propose a hybrid metric that combines
functional correctness and syntactic
similarity and show that it achieves a 14%
stronger correlation with value and can
therefore better represent real-world gains
when evaluating and comparing models.”

Dibia, Victor, et al. "Aligning Offline Metrics and Human Judgments of
Value for Code Generation Models.” ACL 2023

10

How do you know a code gen model is useful for…
Researchers
CS1 students
Junior engineers
Senior engineers
…

A: Quantitative and qualitative modeling!

11

Study humans quantitatively: User modeling on Clickstream

Mozannar, Hussein, et al. "Reading between the lines: Modeling user
behavior and costs in AI-assisted programming." CHI 2024

12

Study humans quantitatively: User modeling on clickstream

Can define and classify what happens in programmer actions (here idle times)

13

Study humans quantitatively: User modeling on clickstream

Can uncover interesting patterns for each individual people!

14

Human behavior in aggregation can show avg use patterns

“In a study with 21 programmers, we saw that the most time intensive state is verifying suggestions, and
Copilot related states (yellow highlight) occupy on average 51% of task time.”

15

Clickstream can uncover interesting patterns!
“Copilot often forces programmer to accept a sequence of suggestions in a row, teasing them to show the
full function/class body, which makes them verify suggestion after accepting them (rather than before)”

16

Also reveal issues in metrics

Human-human – Variance in metrics!
Time and accomplishment? twice the duration, the person-hours required

Human-AI – Too simplified metrics?
E.g. the number of lines of added code – the nature of interaction with Copilot (tab to accept suggestions)
is a big factor!

17

Clickstream can help with design!

Mozannar, Hussein, et al. "When to show a suggestion? integrating
human feedback in ai-assisted programming." AAAI 2024

“We propose a utility theory framework,
which models [when AI should make
intervention to] programmers and decides
which suggestions to display.”

…models that predict suggestion acceptance
to selectively hide suggestions reducing both
latency and programmer verification time.

18

Once have some data, can simulate humans

Mozannar, Hussein, et al. "Simulating Iterative
Human-AI Interaction in Programming with
LLMs." NeurIPS 2023 Workshop

19

Understand humans qualitatively: Surveys

Liang, Jenny T., Chenyang Yang, and Brad A. Myers. "A large-scale survey on the
usability of ai programming assistants: Successes and challenges." ICSE 2024

“To understand developers’ practices while using these tools
and the important usability challenges they face, we
administered a survey to a large population of developers and
received responses from a diverse set of 410 developers.”

20

Understand humans qualitatively: Surveys

Repetitive code (boilerplate code, repetitive endpoints for crud, etc.)
Code with simple logic
Autocomplete (“acceleration”)
Quality assurance (e.g. log messages, test cases)
Proof-of-concepts (generate multiple implementations for a given problem)
Learning (of new libraries or programming languages)
Recalling (Find syntax they were familiar with but couldn’t recall)
Efficiency
Documentation
Code consistency (e.g., indentation, quickly referencing sources created within the project)

21

Why humans use or not use programming tools

22

Bonus: Taxonomy of software requirements
Functional requirements characterize units of functionality that we may want to group
into coarser-grained functionalities that the software should support.

Non-functional requirements

More here: https://www.cs.cmu.edu/~ckaestne/
17313/2018/20180913-requirements-solicitation-and-doc.pdf

https://www.cs.cmu.edu/~ckaestne/17313/2018/20180913-requirements-solicitation-and-doc.pdf
https://www.cs.cmu.edu/~ckaestne/17313/2018/20180913-requirements-solicitation-and-doc.pdf

23

Some other findings you might find interesting…

Engineers’ prompting / input strategies
(ranked by frequency)
Clear explanations, through “doctoring
comments” and test cases
No strategy
Adding code
Follow conventions (e.g., well-named variables)
Break down instructions
Existing code context (“use it at advanced stages
of project, for it to give better suggestions based
on my project’s history”)
Prompt engineering

User-envisioned additional functionalities
Better understanding of code context. e.g., Code from the
same workspace; Don’t use deprecated API
Tool configuration: Have configurable parameters for
suggestion frequency, distinguish[ing when to do] long
code generation and short code [generation]
Natural language interactions
Code analysis, add annotation for functional and syntactic
correctness
Explanations, e.g., link directly to documentation
More suggestions
Account for non-functional requirements

24

How do you know a code gen model is useful?
More metrics from more traditional human-human studies
Analyze actual human interactions
Hear what they have to say

25

How do you make a code gen model useful?

Again first some human-human reference…

26

Qianou Ma, Tongshuang Wu, and Kenneth Koedinger. "Is AI the better
programming partner? Human-Human Pair Programming vs. Human-AI

pAIr Programming." AIED 2023 workshop

Human-Human challenges to opportunities

27

28

How do you make a code gen model useful?

A: Design and iterate on the interface

29

Communication via UI: Inline explanations

Yan, Litao, et al. "Ivie: Lightweight Anchored
Explanations of Just-Generated Code." CHI 2024

30

Communication via UI: Inline explanations

31

Communication via UI: Inline explanations
Usually no need to be super sophisticated methods but just clean communication!

32

How do you make a code gen model useful?

A: Design and iterate for specific use cases (case studies!)

Design for Use Case: Addressing Code Review

33
Alexander Frömmgen, et al. "Resolving Code Review Comments with Machine Learning." ICSE 2024

Design for Use Case: Addressing Code Review

34

An example of a review comment in Critique. The
reviewer asked for a defensive coding practice. The
author addressed the comment by updating their
changelist with a new review snapshot. The update is
shown via colors: green for added text and red for
removed. The author responded to the comment with
“Done.” and marked it “Resolved”.

Design for Use Case: Addressing Code Review

35

“We started by training a model that predicts code edits needed to address reviewer comments. The model is pre-
trained on various coding tasks and related developer activities (e.g., renaming a variable, repairing a broken build,
editing a file). It’s then fine-tuned for this specific task with reviewed code changes, the reviewer comments, and the
edits the author performed to address those comments.”

Model quality: In-product measurements

36

Offline evaluation, by computing the recall@X metric described above over a held-out
test dataset

Online evaluation / user feedback, by measuring the number of code-review comments
produced during day-to-day business, the number of predictions the model made, the
number of those predictions that were previewed, and of those how many were applied, or
received thumbs up/thumbs down.
All types of such evaluation are meant to detect an increase in developer productivity, but
act as easier-tomeasure proxies of that measure.
Acceptance rate: the fraction of comments resolved by an accepted ML suggestion
Discoverability: the fraction of surfaced suggestions that were previewed by system users.

Filters between model and usage

37

“For every new reviewer comment,
we generate the model input in the
same format that is used for training,
query the model, and generate the
suggested code edit. If the model is
confident in the prediction and a
few additional heuristics are
satisfied, we send the suggested
edit to downstream systems.”

The impact of UIs

38

Original: A separate, asynchronous analyzer queried
the model and produced the suggested edit as an
independent code finding, in a separate annotation.

Pitfall: decoupled comment and suggested edit.
-> Duplication of information, wasted precious UI
real-estate, and confused the prevailing visual
language of review comments.

Revision: combine the two sources of information, by
placing a “Show ML edit” in the same box where the
reviewer comment appears

Result: improved discoverability considerably

The impact of UIs

39

Pitfall: click to view. Since code shepherding (i.e.,
editing the changelist in light of the reviewer
comments) takes a significant fraction of developers’
time—one study at Google measured the median to
be around 60 minutes [7]—efficiency in addressing
comments is important

Revision: Showing the suggested edit immediately
next to the reviewer comment, rather than requiring
a click of the “Show ML edit” button.

Result: ML-suggested edit discoverability for the
changelist author improved.

The impact of UIs

40

Original: Just show suggested revision to the code author but
not the reviewer.

Pitfall: decoupled reviewer from ML assistant.
Reviewers who were uncomfortable having an ML model
“interpret” their comment into a suggested edit, and would
prefer to preview the suggestion before providing it to the code
author. “the pedagogical function of code review — It is often
how new engineers are trained on local conventions and
programming discipline.”

Revision: The reviewer is shown the ML-suggested edit as they
type their comment. The reviewer can decide to reject the
suggested edit (in which case the author will only see the
reviewer’s comment).

Result: Many incorrect suggestions are pre-filtered
out; Can use a less lower auto-filter because human
filter is in the loop!

The location of the comment and the mention
of “check” and “null” were sufficient to trigger
the assistant to suggest the intended edit.

The impact of UIs

41

Original: Reviewers are typically pressed for time, and may
move on quickly from comment to comment. In an attempt to
reduce back-end prediction load, and to avoid showing
reviewers suggested edits before they have typed enough of
their comment, we set the triggering delay between when the
reviewer starts typing a comment and when a prediction is
requested to 1500ms.

Pitfall: slow-to-predict edits.; Between this triggering delay,
and the additive prediction latency of the model, many
predictions “missed” the reviewer, who had already moved on.

Revision: Further reduced the triggering delay to 500ms. and
improved the prediction latency through considerable
engineering effort.

Result: number of suggested edits previewed by reviewers
increased by 12%, and the acceptance rate of ML-suggested
edits by authors improved by 18%.

The impact of UIs

42

Original: Our original design of the UI assumed that the
changelist author and reviewers operate in lock step: one stops
when the other starts working on the changelist.

Pitfall: code review is serialized.; This is not how code review
operates in practice. Sometimes the changelist is edited by the
author as the reviewer is reviewing, or perhaps the reviewer
thinks of a new comment after they have passed the bulk of
their review to the author, and sometimes the reviewer attaches
a comment to an older review snapshot of the changelist. All in
all, this means that sometimes even an MLsuggested edit that
the author wishes to accept is incompatible with the current
state of the code.

Revision: detect those cases, and opening a three-way merge
window (Figure 10) for the author to resolve any merge
conflicts.

Result: the number of accepted suggested edits increased.

Some takeaways

43

When a model is in a specific use case it usually means blending into existing workflows

Test-in-product is not the most ideal but usually quite useful

There will be metrics not relevant to model, but just relevant to usability (e.g. discoverability)

Little things like latency in suggestion can easily change usability

UI iteration is a BIG aspect

Need to consider all users touching the system (reviewers, and authors).

Also consider the original objective of the task (a bit of education and training going on!)

44

Case Study: LLM for CS Education
When AI writes code Humans might do more debugging!

Qianou Ma, et al. "How to Teach Programming in the AI Era?
Using LLMs as a Teachable Agent for Debugging.” ICSE 2024

45

46

47

48

49

50

51

LO1: Comprehensive
hypothesis construction

LO2: Accurate hypothesis
construction

Learning Objectives Students’ primary tasks

Make test suite more complete

Debug. Process Model

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis

Verify hypothesis

Correctly map explanations to bugs

Write test suite

Add test case

Evaluate expl.

Select expl.

HypoCompass

Student flow1

Bug fixes

Bug explanations

LLM generation2

Test category hint

Buggy codes

Test case hint

HypoCompass: Learning Theory Inspired Design

Explicit & deliberate training just on debugging, by off-loading other necessary sub-
tasks to LLMs (e.g., writing the bug, correcting the bug, etc.)

52

HypoCompass: Effectiveness Python

Python

Question 2 Select all that apply.

Imagine a solution to this problem that fails on all of these following test case(s) because of the
same bug. What could the bug be?

assert(num_smaller([10, 10, 10, 20, 30], 10) == 0)
assert(num_smaller([10, 20, 20, 30, 30], 20) == 1)
assert(num_smaller([10, 10, 20, 30, 30], 30) == 3)

Select all that apply.

A. The buggy codes may have overlooked duplicated elements in seq
B. The buggy codes may have overlooked x when it is the smallest element in seq
C. The buggy codes may only handle the case where x is not in seq
D. The buggy codes may only handle the case where x is already in seq

Answer:

Question 3.1 Select one answer.

Given this current test suite, which test case out of the pair, if added to the test suite, can cover
additional aspects of the problem and make the testing more comprehensive? In other words,
which test case is more likely to reveal an issue or bug in a code solution that this current test
suite would not reveal?

assert(num_smaller([10, 10, 10, 20, 30], 10) == 0)
assert(num_smaller([10, 20, 20, 30, 30], 20) == 1)
assert(num_smaller([10, 10, 20, 30, 30], 30) == 3)

A. assert(num_smaller([1, 3, 5, 7], 5) == 2)
B. assert(num_smaller([10, 10, 20, 30, 30], 40) == 5)

Answer:

Python

Question 7 Select one answer.

Test case 2: assert(remove_extras_code2([1, 1, 2, 3]) == [1, 2, 3])
Actual behavior: 'TypeError' 'int' object is not iterable.

1 def remove_extras_code2(lst):
2 new_lst = []
3 for i in lst:
4 if i == lst[i+1]:
5 continue
6 else:
7 new_lst += i
8 return new_lst

What's the bug exposed by this test case?

A. The bug occurs because the loop variable i is mistakenly used as both the element and
index of the list. This leads to incorrect comparisons and triggers a TypeError in
lst[i+1] because i is an element of the list, not an index.

B. The bug is caused by not initializing the new_lst properly. The code fails to explicitly
assign an empty list to new_lst, so when concatenating elements to new_lst using the
+= operator, a TypeError occurs because new_lst is not iterable.

C. The bug is due to an incorrect conditional statement. The code incorrectly compares i
with lst[i+1] instead of comparing adjacent elements of the list, which triggers
TypeError when trying to compare an integer i with a list element.

D. The bug occurs because the code incorrectly assumes that i is iterable when
concatenating it to new_lst with the += operator. In this case, i is an integer, which is
not iterable, and it causes a TypeError.

Answer:

HypoCompass consistently generates high-quality
training materials: 90% success rate + only take 15
minutes to label and edit (reduce instructor effort!)

HypoCompass brings learning gain: In a pre-to-post
test setup, 10 novices improved their performances by
17%, with a reduced completion time of 13%.

It is possible to eventually train students
to be better at debugging!

53

LO1: Comprehensive
hypothesis construction

LO2: Accurate hypothesis
construction

Learning Objectives Students’ primary tasks

Make test suite more complete

Debug. Process Model

Initialize hypothesis set

Modify hypothesis set

Select a hypothesis

Verify hypothesis

Correctly map explanations to bugs

Write test suite

Add test case

Evaluate expl.

Select expl.

HypoCompass

Student flow1

HypoCompass: Learning Theory Inspired Design

Explicit & deliberate training just on debugging, by off-loading other necessary sub-
tasks to LLMs (e.g., writing the bug, correcting the bug, etc.)

Bug fixes

Bug explanations

LLM generation2

Test category hint

Buggy codes

Test case hint

There will be skills that can be offload
to LLMs. What skills to offload and, in

turn, what skills to train humans on,
become an interesting HCI question.

 Explicit & deliberate training just on
debugging, by off-loading other
necessary sub-tasks to LLMs (e.g., writing
the bug, correcting the bug, etc.)

54

Task formation in HypoCompass (bug fixing)
LLM task: To edit the buggy code according to the fix instruction without over- or under- fix

You fix bugs in Python code closely following the instructions.
Original code: {buggy_code};
Code modification: {explanation}
Modified code:

def first_num_greater_than (numbers_list, key):
 for i in range(len(numbers_list)):

 if numbers_list[i] <= key:
 return num

 else:
 return None

“Change the comparison line to
be larger than key.”

def first_num_greater_than (numbers_list, key):
 for i in range(len(numbers_list)):

 if numbers_list[i] > key:
 return num

 return None

Over-fixing, because LLM wants to
continue to generate correct code!

55

Task formation in HypoCompass (bug fixing)
LLM task: To edit the buggy code according to the fix instruction without over- or under- fix

You fix bugs in Python code closely following the instructions.
Original code: {buggy_code};
Code modification: {explanation}

Translate the statement into actual, minimal code change in this format:
{original code snippet: ""copy the lines of code that need editing""
-> edited code snippet: ""write the edited code snippet”"}

def first_num_greater_than (numbers_list, key):
 for i in range(len(numbers_list)):

 if numbers_list[i] <= key:
 return num

 else:
 return None

“Change the comparison line to
be larger than key.”

numbers_list[i] <= key → numbers_list[i] > key
Task formation helps avoid competing tasks

of code editing and code completion!

That’s all for today!!

56

