
Foundations: Pretraining and scaling laws

Sean Welleck

Neural Code Generation
Carnegie Mellon University
January 18, 2024

Course Part I

Part I: Foundations

• Learning
• Evaluation
• Inference
• Data

1

Language models

Language model learning pipeline

• Pretraining
• Gives a “foundation model”

• Adaptation
• Continued pretraining
• Fine-tuning
• Learning from feedback
• In-context learning / prompting

2

Language models

Example: CodeLlama [6]

• Pretraining
• 2 trillion (T) tokens of mixed data (web, code, etc.)

•

3

Language models

Example: CodeLlama [6]

• Pretraining
• 2 trillion (T) tokens of mixed data (web, code, etc.)

• Adaptation

• Continued pretraining
• 500 billion (B) tokens of mostly code data

• Finetuning
• Long sequences, Python code, and/or instructions

4

Outline

• Recap of language models and pretraining objective
• Scaling laws for understanding pretraining
• What do these scaling laws not capture?

5

Recap: Language models

A language model is a probability distribution over sequences:

pθ(y) (1)

• y = (y1, . . . , yT)
• θ: parameters

6

Recap: Autoregressive neural language models

Typical language models are autoregressive, and are parameterized
by a transformer:

pθ(y) =
T∏
t=1

pθ(yt|y<t) (2)

• θ: transformer1

1For a review of transformers, see Chapter 12 of Bishop, Deep Learning
https://www.bishopbook.com/.

7

https://www.bishopbook.com/

Recap: Autoregressive neural language models

Autoregressive distributions allow for easy sampling:

• ŷ1 ∼ pθ(∅)
• ŷ2 ∼ pθ(·|ŷ1)
• · · ·
• → ŷ ∼ pθ(y)

Next: how do we learn the parameters θ?

8

Recap: Autoregressive neural language models

Autoregressive distributions allow for easy sampling:

• ŷ1 ∼ pθ(∅)
• ŷ2 ∼ pθ(·|ŷ1)
• · · ·
• → ŷ ∼ pθ(y)

Next: how do we learn the parameters θ?

8

Learning: maximum likelihood

Make observed data likely under the model; maximum likelihood:

argmax
θ

1
|D|

∑
y∈D

log pθ(y) (3)

• Example: D is 2 trillion tokens for Llama 2

9

Learning: maximum likelihood

Make observed data likely under the model; maximum likelihood:

argmax
θ

1
|D|

∑
y∈D

log pθ(y) (3)

• Example: D is 2 trillion tokens for Llama 2

9

Learning: next-token

Equivalently, learn to ‘predict the next token’:

argmax
θ

1
|D|

∑
y∈D

log pθ(y) (4)

≡ argmin
θ

1
|D|

∑
y∈D

T∑
t=1

− log pθ(yt|y<t)︸ ︷︷ ︸
Lt

(5)

10

Learning– Distribution matching

Equivalently, match a target distribution:

argmin
θ

KL(q∥pθ), (6)

where the dataset D ∼ q is sampled from a target distribution q.2

2KL: Kullback-Leibler divergence

11

Learning– Distribution matching

Equivalently, match a target distribution:

min
θ

KL(q∥pθ) = min
θ

−
∑
y∈Y

q(y) log pθ(y)q(y)

≡ min
θ

−
∑
y∈Y

q(y) log pθ(y) + constant

≡ min
θ

−Ey∼q log pθ(y)

≈ min
θ

− 1
|D|

∑
y∈D

log pθ(y)

≡ max
θ

∑
y∈D

log pθ(y)︸ ︷︷ ︸
Maximum likelihood!

12

Recap

Next-token prediction has a nice interpretation: it fits the language
model pθ to a target distribution q represented by the dataset D.

13

The Bitter Lesson

We want to fit the distribution better by “adding more compute”:

• “The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are
ultimately the most effective, and by a large margin”3

What is “compute”?

3The Bitter Lesson, Richard Sutton 2019

14

The Bitter Lesson

We want to fit the distribution better by “adding more compute”:

• “The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are
ultimately the most effective, and by a large margin”3

What is “compute”?

3The Bitter Lesson, Richard Sutton 2019

14

Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

A rough approximation for transformer language models is [4]:

C ≈ 6ND (7)

• N: number of model parameters
• D: number of tokens
• C: compute; floating point operations (FLOPs)

15

Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

A rough approximation for transformer language models is [4]:

C ≈ 6ND (7)

• N: number of model parameters
• D: number of tokens
• C: compute; floating point operations (FLOPs)

15

Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

For example, LLama 2:

C ≈ 6 ∗ 7 billion ∗ 2 trillion (8)
= 8.4× 1022FLOPs (9)

We can increase compute by increasing the number of parameters
(↑ N), training on more tokens (↑ D), or a combination thereof.

16

Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

For example, LLama 2:

C ≈ 6 ∗ 7 billion ∗ 2 trillion (8)
= 8.4× 1022FLOPs (9)

We can increase compute by increasing the number of parameters
(↑ N), training on more tokens (↑ D), or a combination thereof.

16

Good news: cross entropy loss gets better with more compute

Test loss predictably improves with more compute [Kaplan et al 2020 [4]].

17

Good news: cross entropy loss gets better with more compute

Specifically, loss scales as a power-law with the amount of compute:

L(X) ∝ 1/XαX︸ ︷︷ ︸
scaling law

, (10)

where X is compute C, dataset size D, or parameters N.

18

Good news: cross entropy loss gets better with more compute

Example:

L(C) ∝ 1/C0.05 (11)

19

Good news: cross entropy loss gets better with more compute

Basic idea:

• Train models of size N1, . . . ,Nn for D1, . . . ,Dd tokens.
• Plot loss at each step (light blue lines)
• Pick the minimum loss at each amount of compute (black line)
• Run linear regression on the resulting (log L, log C) pairs

20

Typically translates to better task performance

Figure 1: Llama training loss Figure 2: Llama task performance

21

Good news: it appears to hold for code

Figure 3: Codex test loss scaling in number of parameters N

22

Good news: it appears to hold for code

Figure 4: Codex pass rate on HumanEval as a function of parameters N

23

Recap

• Pretraining is equivalent to fitting a target distribution
• The fit predictably gets better as we increase compute, as
described by a scaling law

Should I spend my compute on a larger model, or on more data?

24

Recap

• Pretraining is equivalent to fitting a target distribution
• The fit predictably gets better as we increase compute, as
described by a scaling law

Should I spend my compute on a larger model, or on more data?

24

Scaling laws: allocation

Allocation:

For compute budget C, choose number of parameters N and tokens D
that minimizes loss.

argmin
N,D

L(N,D)

subject to 6ND ≤ C

Investigated in “the Chinchilla paper” [Hoffmann et al 2022 [3]]

25

Scaling laws: allocation

Allocation:

For compute budget C, choose number of parameters N and tokens D
that minimizes loss.

argmin
N,D

L(N,D)

subject to 6ND ≤ C

Investigated in “the Chinchilla paper” [Hoffmann et al 2022 [3]]

25

Allocation: Chinchilla

Figure 5: Previous models (e.g. Gopher) allocate a large portion of compute to model
size. Chinchilla is a smaller model trained on more tokens that outperforms Gopher.

26

Allocation: Chinchilla

27

Allocation: Chinchilla

To choose Chinchilla’s allocation, the authors fit scaling laws on runs
with smaller amounts of compute. They used three approaches.

a ≈ b : parameters and tokens should be scaled at the same rate.

To understand this kind of analysis, we will look at Approach 1

28

Allocation: Chinchilla

To choose Chinchilla’s allocation, the authors fit scaling laws on runs
with smaller amounts of compute. They used three approaches.

a ≈ b : parameters and tokens should be scaled at the same rate.

To understand this kind of analysis, we will look at Approach 1

28

Approach 1: fix N and vary D

• For each size N, train 4 models with different number of tokens D
• For each compute C, pick the model with the lowest loss L
• We now have (C,N,D, L) examples (grey points)

29

Approach 1: fix N and vary D

• Fit power laws using the (C,N,D, L) examples.
• Middle: Nopt ∝ Ca (optimal model size)
• Right Dopt ∝ Cb (optimal number of tokens)

30

Allocation: scale parameters and data equally

As a recap, the slope of the lines appears in the table: scale
parameters and tokens at similar rates.

31

Post-Chinchilla

• The Chinchilla scaling law arguably led to a focus on scaling data
• Trend: train on even more tokens than suggested by the
compute-optimal scaling law.4

4Training a smaller model on more tokens may be compute optimal when
inference-time compute is factored in; smaller models require less inference compute.

32

Post-Chinchilla

Figure 6: Example: Llama 2 – more tokens than Chinchilla, equal size (70B)

33

Scaling laws as a tool in the toolbox

34

Scaling laws as a tool in the toolbox

Figure 7: Scaling laws for batch size and learning rate

35

Scaling laws as a tool in the toolbox

Figure 8: Predicting performance of larger models

36

Recap

• Scaling laws can determine “compute-optimal training”
• I.e., the choice of N and D that minimizes loss at compute budget C.

• Scaling the amount of data is important!!

37

Data constraints

What if we run out of data?

38

Data-constrained scaling

Data-constrained setting

• We might want to train on much more than 2 trillion tokens
• Some programming languages have less tokens

• E.g. Starcoder pretraining data: ≈ 300 billion code tokens
• E.g. Lean has ≈ 300 million tokens [1]

39

Data-constrained scaling

Option 1: repeat the data

• Studied in Scaling Data-Constrained Language Models [5]

40

Data-constrained scaling

Finding: repeating can be good

• 4 epochs is nearly as good as 1 epoch with 4x the data 41

Data-constrained scaling

Option 2: mix in other data

• N1 web tokens + N2 code tokens ≈ repeating N1 web tokens

42

Data-constrained scaling

Option 3: transfer

• Pretrain on D ∼ q (e.g. web)
• Continue training on D′ ∼ q′ (e.g. code)

43

Scaling laws of transfer

Figure 9: Scaling Laws for Transfer [2]

Effective data transfer: code tokens saved by pretraining on text
44

Scaling laws of transfer

Figure 10: Scaling Laws for Transfer [2]

Low-data setting: without pretraining on text, we get no benefit from
increasing parameters.

45

Data-constrained scaling: Llemma

LLEMMA [1]:
• Pretrain on web and code

• Initialize with θcodellama

• Transfer to specialized programming languages and math
• Continue training on D′ : 55 billion token PROOFPILE II

• Mathematical code (e.g., Lean)
• Mathematical web data
• Scientific papers

46

Data-constrained scaling: Llemma

LLEMMA [1]:
• Pretrain on web and code

• Initialize with θcodellama

• Transfer to specialized programming languages and math
• Continue training on D′ : 55 billion token PROOFPILE II

• Mathematical code (e.g., Lean)
• Mathematical web data
• Scientific papers

46

Data-constrained scaling: Llemma

Figure 11: LLEMMA improves with a modest amount of math-specific compute

47

Recap

To keep reducing loss, we need many tokens. What if we run out?

• Repeating tokens can be a useful allocation of compute
• Leverage tokens from a data-rich distribution (e.g. web text)

48

Summary

• Pretraining fits the distribution of pretraining data
• Scaling laws let us forecast performance, allocate compute, and
choose hyperparameters

• In low-data settings: repeat data, mix in other data, transfer

49

Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient
• Training objective: next-token may not be optimally efficient
• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!

50

Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient

• Training objective: next-token may not be optimally efficient
• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!

50

Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient
• Training objective: next-token may not be optimally efficient

• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!

50

Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient
• Training objective: next-token may not be optimally efficient
• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!

50

Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient
• Training objective: next-token may not be optimally efficient
• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!

50

References i

Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. McAleer,
A. Q. Jiang, J. Deng, S. R. Biderman, and S. Welleck.
Llemma: An open language model for mathematics.
ArXiv, abs/2310.10631, 2023.
D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish.
Scaling laws for transfer, 2021.
J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark,
T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, O. Vinyals,
J. W. Rae, and L. Sifre.
Training Compute-Optimal Large Language Models.
In Advances in Neural Information Processing Systems, 2022.

51

References ii

J. Kaplan, S. McCandlish, T. J. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei.
Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020.
N. Muennighoff, A. M. Rush, B. Barak, T. L. Scao, A. Piktus, N. Tazi,
S. Pyysalo, T. Wolf, and C. Raffel.
Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264, 2023.

B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. P.
Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. D’efossez, J. Copet,
F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve.
Code llama: Open foundation models for code.

52

References iii

ArXiv, abs/2308.12950, 2023.

53

Appendix

Appendix

54

Approach 3: parametric fit

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα

+
B
Dβ

(12)

55

Allocation

Step 1: hypothesize a scaling law

L(N,D) = E︸︷︷︸+ A
Nα

+
B
Dβ

(13)

“Entropy term”: with infinite parameters and infinite data (N,D→ ∞),
we should approach the minimum achievable loss (entropy).

56

Allocation

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα︸︷︷︸+ B

Dβ
(14)

“Modeling cost”: with infinite data (D→ ∞), we should incur a cost
from using a transformer with N parameters.

57

Allocation

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα

+
B
Dβ︸︷︷︸ (15)

“Optimization cost”: with infinite parameters (N→ ∞), we should
incur a cost from using only D tokens with gradient descent.

58

Allocation: scale parameters and data equally

Step 2: fit constants E,A, α,B, β using losses from training runs

L(N,D) = E+ A
N0.34︸︷︷︸ +

B
D0.28︸︷︷︸ (16)

59

Allocation: scale parameters and data equally

Step 3: derive the optimal parameters and tokens from L, plug in α, β:

Result: a = 0.46, b = 0.54

60

