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Language models

Language model learning pipeline

- Pretraining
- Gives a “foundation model”
- Adaptation

- Continued pretraining

- Fine-tuning

- Learning from feedback

- In-context learning / prompting



Language models

Example: CodeLlama [6]

- Pretraining
- 2 trillion (T) tokens of mixed data (web, code, etc.)

PRETRAINING

Self-supervised Llama 2
learning

Pretraining data



Language models

Example: CodeLlama [6]

- Pretraining
- 2 trillion (T) tokens of mixed data (web, code, etc.)

- Adaptation

CopE Lrama

Long context (7B =, 13B =, 34B)
fine-tuning .
Liama 2 Code training 208 ;‘:’:;""::;'; _, CopeLrama - Istrucr
Foundation models — Infilling code training = (7B =, 13B =, 34B)
Python code
train}

5B
(7B, 13B, 34B) 500B Long context

ing  —» Fine-tuning CopE LLAMA - PyTHON

(7B, 13B, 34B)
1008 208

- Continued pretraining
- 500 billion (B) tokens of mostly code data
- Finetuning
- Long sequences, Python code, and/or instructions



- Recap of language models and pretraining objective
- Scaling laws for understanding pretraining

- What do these scaling laws not capture?



Recap: Language models

A language model is a probability distribution over sequences:

Po(y) (1)

: y:(y17~-~,YT)
- 0: parameters



Recap: Autoregressive neural language models

Typical language models are autoregressive, and are parameterized
by a transformer:

.
po(y) = [ [ po(vily<t) 2)

- 0: transformer’

TFor a review of transformers, see Chapter 12 of Bishop, Deep Learning
https://www.bishopbook.com/.


https://www.bishopbook.com/

Recap: Autoregressive neural language models

Autoregressive distributions allow for easy sampling:

- 1 ~ pa(0)
© 9o~ po(-1¥h)

- =¥~ pa(y)



Recap: Autoregressive neural language models

Autoregressive distributions allow for easy sampling:
* §1 ~ pe(D)
* §2 ~ po(-[¥1)
© =¥~ pa(y)

Next: how do we learn the parameters 6?



Learning: maximum likelihood

Make observed data likely under the model; maximum likelihood:

1
arg max D] Z log po(Y) (3)
yeD



Learning: maximum likelihood

Make observed data likely under the model; maximum likelihood:

1
arg max D] Z log po(Y) (3)
yeD

- Example: D is 2 trillion tokens for Llama 2



Learning: next-token

Equivalently, learn to ‘predict the next token”:

arg max D Zlogpg y) (4)
‘ |y€D
Eargmln ZZ log pe(Vely<t) (5)
—,_/

yE"Dt 1



Learning— Distribution matching

Equivalently, match a target distribution:

arg min KL(|po). (©)

where the dataset D ~ g is sampled from a target distribution g.?

2KL: Kullback-Leibler divergence

1



Learning— Distribution matching

Equivalently, match a target distribution:

. . Po(y)
min KL = min — o)
in KL(q][po) = mi yGZ;cJ(y) E50)
= mm—Zq ) log pe(y) + constant
yey

= moin —Ey~qlog po(y)

Nmem ‘D|Z|ogp9 y)

yeD

= max > " logps(y)

yeD

Maximum likelihood!



Next-token prediction has a nice interpretation: it fits the language
model py to a target distribution g represented by the dataset D.



The Bitter Lesson

We want to fit the distribution better by “adding more compute™:

- “The biggest lesson that can be read from 70 years of Al research
is that general methods that leverage computation are
ultimately the most effective, and by a large margin”?

3The Bitter Lesson, Richard Sutton 2019

14



The Bitter Lesson

We want to fit the distribution better by “adding more compute™:

- “The biggest lesson that can be read from 70 years of Al research
is that general methods that leverage computation are
ultimately the most effective, and by a large margin”?

What is “compute”?

3The Bitter Lesson, Richard Sutton 2019

14



We spend compute by performing forward and backward passes
using our model on token sequences.



We spend compute by performing forward and backward passes
using our model on token sequences.

A rough approximation for transformer language models is [4]:
C ~ 6ND (7)
- N: number of model parameters

- D: number of tokens
- C: compute; floating point operations (FLOPS)



We spend compute by performing forward and backward passes
using our model on token sequences.

For example, LLama 2:

C= 67 billion 2 trillion (8)
= 8.4 x 10??FLOPs (9)
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We spend compute by performing forward and backward passes
using our model on token sequences.

For example, LLama 2:

C= 67 billion 2 trillion (8)
= 8.4 x 10??FLOPs (9)

We can increase compute by increasing the number of parameters
(1 N), training on more tokens (1 D), or a combination thereof.

16



Good news: cross entropy loss gets better with more compute

Test Loss

s e L=(D/5.4-10)-09% | 5.6 —— L=(N/8.8-10'%)70.076
. 3.9 48
. \ 3.6 2.0
3.3 32
3
3.0
2.4
L = (Crin/2.3 - 108)=0:050
2 2.7
i0-® 1077 10-° 1073 107! 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Test loss predictably improves with more compute [Kaplan et al 2020 [4]1.



Good news: cross entropy loss gets better with more compute

7 42
6 —— L=(D/5.4-10'3)700% | 5.6 —— L=(N/8.8-10%3)70076
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Compute Dataset Size Parameters
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Specifically, loss scales as a power-law with the amount of compute:

L(X) oc 1/X, (10)
———

scaling law

where X is compute C, dataset size D, or parameters N.



Good news: cross entropy loss gets better with more compute

7 4.2
o L =(D/5.4-1013)00% | 56 —— L=(N/8.8-103)70.076
3.9
4.8
- 4.0
S
‘g’ 3.3 32
3
3.0
24
L= (Crpin/2.3 - 108)~0-050
2 2.7
fo-® 1077 105 1073 10! 10! 10¢ 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Example:

L(C) o 1/ (1)
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Good news: cross entropy loss gets better with more compute

7
6 —— L=(D/5.4-10'3)7009 | 56 —— L=(N/8.8-10%3)70076
3.9
4.8
P
§ . 3.6 4.0
2 33 32
3
3.0
24
L= (Crpin/2.3 - 108)70:050
2 2.7
i0=® 1077 1075 1073 10°' 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding
Basic idea:

- Train models of size Ny, ..., N, for Ds,..., Dy tokens.
- Plot loss at each step (light blue lines)
- Pick the minimum loss at each amount of compute (black line)

- Run linear regression on the resulting (log L, log C) pairs

20



Typically translates to better task performance

—— LLaMA 7B

LLaMA 13B
—— LLaMA 33B
—— LLaMA 65B

Figure 1:

400 600 800 1000 1200 1400
Billion of tokens

Llama training loss

TriviagA Hellaswag NaturalQuestions

o 20 500 750 1000 1350 1500 0 50 750 1000 1250 1500
Billon of tokens Bilion of tokens Billon of tokens

Figure 2: Llama task performance
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Good news: it appears to hold for code

Codex Loss Scaling
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Figure 3: Codex test loss scaling in number of parameters N
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Good news: it appears to hol

Pass Rate vs Model Size
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Figure 4: Codex pass rate on HumanEval as a function of parameters N
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- Pretraining is equivalent to fitting a target distribution

- The fit predictably gets better as we increase compute, as
described by a scaling law

24



- Pretraining is equivalent to fitting a target distribution

- The fit predictably gets better as we increase compute, as
described by a scaling law

Should | spend my compute on a larger model, or on more data?

24



Scaling laws: allocation

Allocation:

For compute budget C, choose number of parameters N and tokens D
that minimizes loss.

25



Scaling laws: allocation

Allocation:

For compute budget C, choose number of parameters N and tokens D
that minimizes loss.

T L(N,D)

subject to 6ND < C

Investigated in “the Chinchilla paper” [Hoffmann et al 2022 [3]]

25



Allocation: Chinchilla

T Megatron-Turing NLG (530B)

*Gupher (2808B)
GPT-3 (1705)*

1le25 FLOPs

1008 1e24 FLOPs

Chinchilla (70B)

1le23 FLOPs

1le22 FLOPs

Parameters
=
(=]
w

le2l FLOPs

1B 1e20 FLOPs

—— Our estimated compute-optimal scaling
100M
108 100B 1T 10T
Tokens

Figure 5: Previous models (e.g. Gopher) allocate a large portion of compute to model

size. Chinchilla is a smaller model trained on more tokens that outperforms Gopher.
26
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Figure 5 | Pile Evaluation. For the different evaluation sets in The Pile (Gao et al., 2020), we show

the bits-per-byte (bpb) improvement (decrease) of Chinchilla compared to Gopher. On all subsets,

Chinchilla outperforms Gopher.
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Allocation: Chinchilla

To choose Chinchilla’s allocation, the authors fit scaling laws on runs
with smaller amounts of compute. They used three approaches.

Approach Coeff. a where N,p; oc C*  Coeff. b where D, ct
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)

2. IsoFLOP profiles 0.49 (0.462, 0.534) 0.51 (0.483, 0.529)

3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) [23] 0.73 0.27

a ~ b : parameters and tokens should be scaled at the same rate.
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Allocation: Chinchilla

To choose Chinchilla’s allocation, the authors fit scaling laws on runs
with smaller amounts of compute. They used three approaches.

Approach Coeff. a where N,p; oc C*  Coeff. b where D, ct
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)

2. IsoFLOP profiles 0.49 (0.462, 0.534) 0.51 (0.483, 0.529)

3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) [23] 0.73 0.27

a ~ b : parameters and tokens should be scaled at the same rate.

To understand this kind of analysis, we will look at Approach 1

28



Approach 1: fix N and vary D

-10B

-2.5B

-500M
-250M

Parameters

-75M

..
0% 10 10 10%° 10%' 1072
FLOPS

- For each size N, train 4 models with different number of tokens D
- For each compute C, pick the model with the lowest loss L
- We now have (C,N, D, L) examples (grey points)

29



Approach 1: fix N and var

100
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- Fit power laws using the (C,N, D, L) examples.
- Middle: Nopt o< C (optimal model size)
- Right Dopt o C° (optimal number of tokens)
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Allocation: scale parameters and data equally

As a recap, the slope of the lines appears in the table: scale
parameters and tokens at similar rates.

Approach Coeff. a where N,y o C*  Coeff. b where D,y (ol
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) [23] 0.73 0.27
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Post-Chinchilla

- The Chinchilla scaling law arguably led to a focus on scaling data

- Trend: train on even more tokens than suggested by the
compute-optimal scaling law.*

“Training a smaller model on more tokens may be compute optimal when
inference-time compute is factored in; smaller models require less inference compute.

32



Post-Chinchilla

Train PPL

0 250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

Figure 6: Example: Llama 2 — more tokens than Chinchilla, equal size (70B)
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Scaling laws as a tool in the toolbox

@' deepseck

DeepSeek LLM
Scaling Open-Source Language Models with Longtermism

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chenggi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao,
Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He,
Wenjie Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y.K. Li, Wenfeng Liang,
Fangyun Lin, A.X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu,
Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu,
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang,
Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie,
Yiliang Xiong, Hanwei Xu, R.X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu,
Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang,
Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao,
Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, Yuheng Zou "

CL] 5 Jan 2024

"DeepSeek-AlL
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Scaling laws as a tool in the toolb
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Figure 7: Scaling laws for batch size and learning rate
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Scaling laws as a tool in the toolbox
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Figure 8: Predicting performance of larger models
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- Scaling laws can determine “compute-optimal training”
- le, the choice of N and D that minimizes loss at compute budget C.

- Scaling the amount of data is important!!
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Data constraints

What if we run out of data?

38



Data-constrained scaling

Data-constrained setting

- We might want to train on much more than 2 trillion tokens
- Some programming languages have less tokens

- E.g. Starcoder pretraining data: ~ 300 billion code tokens
- E.g. Lean has ~ 300 million tokens [1]

39



Data-constrained scaling

Option 1: repeat the data

- Studied in Scaling Data-Constrained Language Models [5]

40



Data-constrained scaling

Return on compute when repeating
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Data-constrained scaling

Option 2: mix in other data

Repeat Repeat

7~ N -

Filling with
o EATA BUDGET CODE DATA

o _
Deduplicate /
Porplexityilter
meocerl B

Repeat Repeat Repeat

= = ~ N N
> ® S N ®

Average Performance on 19 tasks (%)

=

Strategy
—e— Repeating data
~e— Filling missing data with Python code

Y Perplexity-filter then repeat
Y Deduplicate then repeat

100% 50%
Data Budget

- Ny web tokens + N, code tokens a repeating N, web tokens
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Data-constrained scaling

Option 3: transfer

- Pretrain on D ~ g (e.g. web)

- Continue training on D’ ~ ¢’ (e.g. code)

43



Scaling laws of transfer

Visual Explanation of Effective Data Transferred

. o —e— pre-trained on text
4x10 © e— trained from scratch

3x10°

Dg,Total Effective Data

2x10°{ p_ Fine-tuning ., Effective Data N
) datas T

| Transfered

test loss

10° A

104 10° 106 107 108 10° 1010
python characters in dataset

Figure 9: Scaling Laws for Transfer [2]

Effective data transfer: code tokens saved by pretraining on text "



Scaling laws of transfer

Trained from Scratch Pre-trained on Text

1010

10°

108

test loss

107

python characters in dataset

108

10° 10° 107 108 10° 10° 10° 107 108 10°
parameters parameters

Figure 10: Scaling Laws for Transfer [2]

Low-data setting: without pretraining on text, we get no benefit from

increasing parameters.
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Data-constrained scaling: Llemma

LLEMMA [1]:
- Pretrain on web and code
- Initialize with Ocodetiama

- Transfer to specialized programming languages and math
- Continue training on D’ : 55 billion token PROOFPILE Il

46



Data-constrained scaling: Llemma

LLEMMA [1]:
- Pretrain on web and code
- Initialize with Ocodetiama

- Transfer to specialized programming languages and math
- Continue training on D’ : 55 billion token PROOFPILE Il

- Mathematical code (e.g., Lean)
- Mathematical web data
- Scientific papers
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Data-constrained scaling: Llemma

MATH accuracy vs. training FLOPs
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Figure 11: LLEMMA improves with a modest amount of math-specific compute
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To keep reducing loss, we need many tokens. What if we run out?

- Repeating tokens can be a useful allocation of compute

- Leverage tokens from a data-rich distribution (e.g. web text)

48



- Pretraining fits the distribution of pretraining data

- Scaling laws let us forecast performance, allocate compute, and
choose hyperparameters
- In low-data settings: repeat data, mix in other data, transfer

49



Looking ahead

What do these scaling laws not cover?
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Looking ahead

What do these scaling laws not cover?

- Data quality: ‘better’ data may be more compute efficient

We will discuss all of these during the semester!
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Looking ahead
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Looking ahead

What do these scaling laws not cover?

- Data quality: ‘better’ data may be more compute efficient
- Training objective: next-token may not be optimally efficient

- Distribution mismatch: what if we perfectly fit g, but want g’

- @q: code on the internet
- @’: code that satisfies a user’s intent

We will discuss all of these during the semester!
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Looking ahead

What do these scaling laws not cover?

- Data quality: ‘better’ data may be more compute efficient
- Training objective: next-token may not be optimally efficient

- Distribution mismatch: what if we perfectly fit g, but want g’

- @q: code on the internet
- @’: code that satisfies a user’s intent

- Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!
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Appendix
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Approach 3: parametric fit

Step 1: hypothesize a scaling law

A B
L(N.D) = E+ 52 + o5 (12)
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Allocation

Step 1: hypothesize a scaling law

A B

L(N,D) = E_+rz + 55

= (13)

“Entropy term”: with infinite parameters and infinite data (N, D — o0),
we should approach the minimum achievable loss (entropy).
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Allocation

Step 1: hypothesize a scaling law

A B
L(N.D) =E+ -7 +55 (14)
~~

“Modeling cost”: with infinite data (D — oo), we should incur a cost
from using a transformer with N parameters.
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Allocation

Step 1: hypothesize a scaling law

A B
L(N.D)=E++2+ o5 (15)
~~

“Optimization cost”: with infinite parameters (N — oo), we should
incur a cost from using only D tokens with gradient descent.
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Allocation: scale parameters and data equally

Step 2: fit constants E, A, a, B, B using losses from training runs

A B
N0.34 + D0.28
[

L(N,D) = E +

59



Allocation: scale parameters and data equally

Step 3: derive the optimal parameters and tokens from L, plug in «, 8:

b

Nope(C) =G(g) , Dope(C) =G'1(%) ,

1
aA\ @ B a
ey , a 5

where G = ( 7B

Result: a = 0.46, b = 0.54
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