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Course Part I

Part I: Foundations

• Learning
• Evaluation
• Inference
• Data
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Language models

Language model learning pipeline

• Pretraining
• Gives a “foundation model”

• Adaptation
• Continued pretraining
• Fine-tuning
• Learning from feedback
• In-context learning / prompting

2



Language models

Example: CodeLlama [6]

• Pretraining
• 2 trillion (T) tokens of mixed data (web, code, etc.)

•
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Language models

Example: CodeLlama [6]

• Pretraining
• 2 trillion (T) tokens of mixed data (web, code, etc.)

• Adaptation

• Continued pretraining
• 500 billion (B) tokens of mostly code data

• Finetuning
• Long sequences, Python code, and/or instructions
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Outline

• Recap of language models and pretraining objective
• Scaling laws for understanding pretraining
• What do these scaling laws not capture?
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Recap: Language models

A language model is a probability distribution over sequences:

pθ(y) (1)

• y = (y1, . . . , yT)
• θ: parameters
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Recap: Autoregressive neural language models

Typical language models are autoregressive, and are parameterized
by a transformer:

pθ(y) =
T∏
t=1

pθ(yt|y<t) (2)

• θ: transformer1

1For a review of transformers, see Chapter 12 of Bishop, Deep Learning
https://www.bishopbook.com/.
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Recap: Autoregressive neural language models

Autoregressive distributions allow for easy sampling:

• ŷ1 ∼ pθ(∅)
• ŷ2 ∼ pθ(·|ŷ1)
• · · ·
• → ŷ ∼ pθ(y)

Next: how do we learn the parameters θ?
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Learning: maximum likelihood

Make observed data likely under the model; maximum likelihood:

argmax
θ

1
|D|

∑
y∈D

log pθ(y) (3)

• Example: D is 2 trillion tokens for Llama 2
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Learning: next-token

Equivalently, learn to ‘predict the next token’:

argmax
θ

1
|D|

∑
y∈D

log pθ(y) (4)

≡ argmin
θ

1
|D|

∑
y∈D

T∑
t=1

− log pθ(yt|y<t)︸ ︷︷ ︸
Lt

(5)
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Learning– Distribution matching

Equivalently, match a target distribution:

argmin
θ

KL(q∥pθ), (6)

where the dataset D ∼ q is sampled from a target distribution q.2

2KL: Kullback-Leibler divergence
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Learning– Distribution matching

Equivalently, match a target distribution:

min
θ

KL(q∥pθ) = min
θ

−
∑
y∈Y

q(y) log pθ(y)q(y)

≡ min
θ

−
∑
y∈Y

q(y) log pθ(y) + constant

≡ min
θ

−Ey∼q log pθ(y)

≈ min
θ

− 1
|D|

∑
y∈D

log pθ(y)

≡ max
θ

∑
y∈D

log pθ(y)︸ ︷︷ ︸
Maximum likelihood!
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Recap

Next-token prediction has a nice interpretation: it fits the language
model pθ to a target distribution q represented by the dataset D.
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The Bitter Lesson

We want to fit the distribution better by “adding more compute”:

• “The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are
ultimately the most effective, and by a large margin”3

What is “compute”?

3The Bitter Lesson, Richard Sutton 2019
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Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

A rough approximation for transformer language models is [4]:

C ≈ 6ND (7)

• N: number of model parameters
• D: number of tokens
• C: compute; floating point operations (FLOPs)
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Compute

We spend compute by performing forward and backward passes
using our model on token sequences.

For example, LLama 2:

C ≈ 6 ∗ 7 billion ∗ 2 trillion (8)
= 8.4× 1022FLOPs (9)

We can increase compute by increasing the number of parameters
(↑ N), training on more tokens (↑ D), or a combination thereof.
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Good news: cross entropy loss gets better with more compute

Test loss predictably improves with more compute [Kaplan et al 2020 [4]].
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Good news: cross entropy loss gets better with more compute

Specifically, loss scales as a power-law with the amount of compute:

L(X) ∝ 1/XαX︸ ︷︷ ︸
scaling law

, (10)

where X is compute C, dataset size D, or parameters N.
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Good news: cross entropy loss gets better with more compute

Example:

L(C) ∝ 1/C0.05 (11)

19



Good news: cross entropy loss gets better with more compute

Basic idea:

• Train models of size N1, . . . ,Nn for D1, . . . ,Dd tokens.
• Plot loss at each step (light blue lines)
• Pick the minimum loss at each amount of compute (black line)
• Run linear regression on the resulting (log L, log C) pairs
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Typically translates to better task performance

Figure 1: Llama training loss Figure 2: Llama task performance
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Good news: it appears to hold for code

Figure 3: Codex test loss scaling in number of parameters N
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Good news: it appears to hold for code

Figure 4: Codex pass rate on HumanEval as a function of parameters N
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Recap

• Pretraining is equivalent to fitting a target distribution
• The fit predictably gets better as we increase compute, as
described by a scaling law

Should I spend my compute on a larger model, or on more data?
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Scaling laws: allocation

Allocation:

For compute budget C, choose number of parameters N and tokens D
that minimizes loss.

argmin
N,D

L(N,D)

subject to 6ND ≤ C

Investigated in “the Chinchilla paper” [Hoffmann et al 2022 [3]]
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Allocation: Chinchilla

Figure 5: Previous models (e.g. Gopher) allocate a large portion of compute to model
size. Chinchilla is a smaller model trained on more tokens that outperforms Gopher.
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Allocation: Chinchilla
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Allocation: Chinchilla

To choose Chinchilla’s allocation, the authors fit scaling laws on runs
with smaller amounts of compute. They used three approaches.

a ≈ b : parameters and tokens should be scaled at the same rate.

To understand this kind of analysis, we will look at Approach 1
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Approach 1: fix N and vary D

• For each size N, train 4 models with different number of tokens D
• For each compute C, pick the model with the lowest loss L
• We now have (C,N,D, L) examples (grey points)
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Approach 1: fix N and vary D

• Fit power laws using the (C,N,D, L) examples.
• Middle: Nopt ∝ Ca (optimal model size)
• Right Dopt ∝ Cb (optimal number of tokens)
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Allocation: scale parameters and data equally

As a recap, the slope of the lines appears in the table: scale
parameters and tokens at similar rates.
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Post-Chinchilla

• The Chinchilla scaling law arguably led to a focus on scaling data
• Trend: train on even more tokens than suggested by the
compute-optimal scaling law.4

4Training a smaller model on more tokens may be compute optimal when
inference-time compute is factored in; smaller models require less inference compute.
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Post-Chinchilla

Figure 6: Example: Llama 2 – more tokens than Chinchilla, equal size (70B)
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Scaling laws as a tool in the toolbox

34



Scaling laws as a tool in the toolbox

Figure 7: Scaling laws for batch size and learning rate
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Scaling laws as a tool in the toolbox

Figure 8: Predicting performance of larger models
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Recap

• Scaling laws can determine “compute-optimal training”
• I.e., the choice of N and D that minimizes loss at compute budget C.

• Scaling the amount of data is important!!
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Data constraints

What if we run out of data?
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Data-constrained scaling

Data-constrained setting

• We might want to train on much more than 2 trillion tokens
• Some programming languages have less tokens

• E.g. Starcoder pretraining data: ≈ 300 billion code tokens
• E.g. Lean has ≈ 300 million tokens [1]
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Data-constrained scaling

Option 1: repeat the data

• Studied in Scaling Data-Constrained Language Models [5]
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Data-constrained scaling

Finding: repeating can be good

• 4 epochs is nearly as good as 1 epoch with 4x the data 41



Data-constrained scaling

Option 2: mix in other data

• N1 web tokens + N2 code tokens ≈ repeating N1 web tokens
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Data-constrained scaling

Option 3: transfer

• Pretrain on D ∼ q (e.g. web)
• Continue training on D′ ∼ q′ (e.g. code)
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Scaling laws of transfer

Figure 9: Scaling Laws for Transfer [2]

Effective data transfer: code tokens saved by pretraining on text
44



Scaling laws of transfer

Figure 10: Scaling Laws for Transfer [2]

Low-data setting: without pretraining on text, we get no benefit from
increasing parameters.
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Data-constrained scaling: Llemma

LLEMMA [1]:
• Pretrain on web and code

• Initialize with θcodellama

• Transfer to specialized programming languages and math
• Continue training on D′ : 55 billion token PROOFPILE II

• Mathematical code (e.g., Lean)
• Mathematical web data
• Scientific papers
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Data-constrained scaling: Llemma

Figure 11: LLEMMA improves with a modest amount of math-specific compute

47



Recap

To keep reducing loss, we need many tokens. What if we run out?

• Repeating tokens can be a useful allocation of compute
• Leverage tokens from a data-rich distribution (e.g. web text)
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Summary

• Pretraining fits the distribution of pretraining data
• Scaling laws let us forecast performance, allocate compute, and
choose hyperparameters

• In low-data settings: repeat data, mix in other data, transfer
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Looking ahead

What do these scaling laws not cover?

• Data quality: ‘better’ data may be more compute efficient
• Training objective: next-token may not be optimally efficient
• Distribution mismatch: what if we perfectly fit q, but want q′

• q: code on the internet
• q′: code that satisfies a user’s intent

• Many others: architecture, inference cost, performance metric,...

We will discuss all of these during the semester!
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Approach 3: parametric fit

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα

+
B
Dβ

(12)
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Allocation

Step 1: hypothesize a scaling law

L(N,D) = E︸︷︷︸+ A
Nα

+
B
Dβ

(13)

“Entropy term”: with infinite parameters and infinite data (N,D→ ∞),
we should approach the minimum achievable loss (entropy).
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Allocation

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα︸︷︷︸+ B

Dβ
(14)

“Modeling cost”: with infinite data (D→ ∞), we should incur a cost
from using a transformer with N parameters.
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Allocation

Step 1: hypothesize a scaling law

L(N,D) = E+ A
Nα

+
B
Dβ︸︷︷︸ (15)

“Optimization cost”: with infinite parameters (N→ ∞), we should
incur a cost from using only D tokens with gradient descent.
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Allocation: scale parameters and data equally

Step 2: fit constants E,A, α,B, β using losses from training runs

L(N,D) = E+ A
N0.34︸︷︷︸ +

B
D0.28︸︷︷︸ (16)
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Allocation: scale parameters and data equally

Step 3: derive the optimal parameters and tokens from L, plug in α, β:

Result: a = 0.46, b = 0.54

60


