Learning from [code-related] feedback

Sean Welleck

Neural Code Generation
Carnegie Mellon University
January 18, 2024

Course Part |

Part |: Foundations

- Learning
- Evaluation
- Inference
- Data

Language models

Language model learning pipeline

- Pretraining
- Gives a “foundation model”
- Adaptation

- Continued pretraining

- Fine-tuning

- Learning from feedback

- In-context learning / prompting

Language models

Problem: distribution mismatch

- Language model py fits distribution g
- E.g, code on the web

- Language model does not learn desired distribution g’
- E.g, code that passes tests

This can be for several reasons. For instance, not enough data, not
diverse enough data, limited model capacity.

Observation 1: many signals are not explicitly in pretraining data

- whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 1: many signals are not explicitly in pretraining data

- whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Observation 1: many signals are not explicitly in pretraining data

- whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Today: learning from feedback on generated programs

- Reinforcement learning
- Reward modeling

- Expert iteration

Reinforcement learning

Adjust the model so that it maximizes a reward function:

arg moax]EXN'D,prg('lx) [R(X7 y)]

J(0)

Example reward:

- R(x,y)=1 if program y passes test cases

Reinforcement learning

General pattern:

- Generate data with the model, y ~ pg(-|x)
- Score the data, R(Y)
- Update the model using data and rewards

At a high level:

* Por = A(po, {x},R)

Policy gradient methods [11, 10]

Generate program § ~ pg(-x)

Estimate the gradient of the expected reward with respect to 6:
VG]() Exp Y~po(y|x) VG log pg (y‘X) (X, y) (1)

Use gradient descent to update model parameters, 6’ < 0 + aV,.

Example: PPO (proximal policy optimization) [7]

Various innovations to stabilize policy gradient (out of scope)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data. through i ion with the envi and optimizing a
“surrogatc” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
LY d

1-ti

At the end, we get an alternative algorithm:

per < Appo(Ps, {X},R)

RL: used to update a model using rewards and generated sequences.

" Por < A(po, {X},R)
- Policy gradient, PPO, ...

How do we choose the reward?

Reward hacking

Issue 1: reward hacking

- Models can overfit to patterns in the reward
- Example:
- R(x,y)=1 if program y compiles, 0 otherwise

Then generatingy = print("hello world") for all x would
maximize reward.

1

Reward hacking: KL-divergence penalty [14]

Mitigation: KL-divergence penalty
- Keep the updated model close to the pretrained model

R = =B log 73

Reward hacking: KL-divergence penalty [14]

Mitigation: KL-divergence penalty
- Keep the updated model close to the pretrained model

R = =B log 73

Di(po(yIX)[IPo(y1X)) ZP9 yk)lo (Ix ;

)
& po(yX)
po(H1x)
Po(TIx)’

y~Peo

~ |

where § ~ py(+|x), i.e. a single-sample Monte-Carlo approximation.

Sparse reward

Issue 2: sparse reward

- The reward may be 0 for many programs; we only occasionally
see a positive reward

Mitigation: engineer the reward function

Example: PPOCoder

Execution-based Code Generation using Deep RL [8]

Execution

* Rexecution(X, ¥): 11f program § compiles and passes tests cases

14

Example: PPOCoder

Execution-based Code Generation using Deep RL [8]

Execution
* Rexecution(X, ¥): 11f program § compiles and passes tests cases
Syntactic matching score

* Reyntax(X, ¥, v«): overlap between abstract syntax tree of y and y.

14

Example: PPOCoder

Execution-based Code Generation using Deep RL [8]

Execution

* Rexecution(X, ¥): 11f program § compiles and passes tests cases
Syntactic matching score

* Reyntax(X, ¥, v«): overlap between abstract syntax tree of y and y.
Semantic matching score

* Rsemantics(X, ¥, ¥«): overlap between dataflow graph of y and y.

R= Rexecution + Rsyntax + Rsemantics + RKL

14

Example: PPOCoder

Execution-based Code Generation using Deep RL [8]

Execution

* Rexecution(X, ¥): 11f program § compiles and passes tests cases
Syntactic matching score

* Reyntax(X, ¥, v«): overlap between abstract syntax tree of y and y.
Semantic matching score

* Rsemantics(X, ¥, ¥«): overlap between dataflow graph of y and y.

R= Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward

14

PPOCoder results

Table 1: Results on the code completion task for completing the last 25 masked tokens from CodeSearchNet.

Model TeMatch _ 1Edit Sim 1 Comp Rate
BILSTM 20.74 55.32 36.34
Transformer 38.91 61.47 40.22
GPT-2 40.13 63.02 43.26
CodeGPT 41.98 64.47 46.84
CodeT5 (220M) 42.61 68.54 52.14
PPOCoder + CodeT5 (220M) 42.63 69.22 97.68

Figure 1: Compilation rate increases while holding other metrics constant

PPOCoder results

Tpass@l Tpass@s

Model Size Intro Inter Comp All Intro Inter Comp Al
Codex 2B 414 014 002 092 965 051 0.09 225
AlphaCode 1B - - - - - - - -
GPT-3 1758 020 003 000 0.06

GPT-2 01B 100 033 000 040 073 000 102
GPT-2 15B 130 070 000 068 103 000 134
GPT-Neo 278 390 057 000 112 080 000 158
CodeT5 60M 140 067 000 0.68 087 010

CodeT5 220M 250 073 0.00 094 110 010

CodeT5 770M 360 090 020 130 137 020 L
CodeRL+CodeT5 770M 490 106 0.5 L7l 264 10 351
PPOCoder +CodeT5 770M 5.20 100 0.5 1.74 250 1.20 3.56

Model

GPT

GPT

GPT

GPT

GPT

GPT

GPT

CodeT5

CodeT5

CodeT5
CodeRL+CodeT5
PPOCoder +CodeT5

Size
224M
422M

1B

4B

8B
68B
137B
60M
220M
770M
770M
770M

State
fine-tuned
fine-tuned
fi
fi

med
med
fi ned
fi ned
fine-tuned
fine-tuned
fine-tuned
fine-tuned

Tpass @80
2

Figure 2: APPS

Figure 3: MBPP (transfer)

16

PPOCoder ablations

I +cs (w/o kl)
N +cs (w/kl)

eT5
+7G (REINFORCE)
os| W +PG+VF (A2C)
- CPI+VF (PPO)

Compilation Rate
Compilation Rate

Figure 4: Reward terms Figure 5: RL objective Figure 6: KL

(MBPP) (MBPP) penalty

Qualitative - what is it changing

Source (NL)

You are given two integers n and m. Calculate the number of pairs of arrays (a, b) such that: the length of
both arrays is equal to m; each element of each array is an integer between 1 and n (inclusive); ai < bi for
any index i from 1 to m; array a is sorted in non-descending order; array b is sorted in non ascending order.

As the result can be very large, you should print it modulo 109 + 7.

Input: The only line contains two integers n and m (1 <n <1000, 1 <m < 10).

Output: Print one integer — the number of arrays a and b satisfying the conditions described above modulo

109 +7

Generated (Python)

CodeT5

PPOCoder+CodeT5

MOD = 109 +7
def solve(n, m): (1)

for i in range(2, m + 1):
forjinrange(t, n+ 1) ()

dp(ill] = (dp(ili] + dpli - 1][]) % MOD
ans =
for i in range(1, n + 1)
ans = (ans + dp[m][i]) % MOD
return ans

n,m = map(int,input().split())
print(solve(n,m))

Pass Tests? .

MOD =10*9 +7

def solve(n, m):
p = (n + 1) for _in range(m + 1)]
foriin range(1, n +1):
(1]l = 1
for i in range(2, m + 1):
for jin range(1, n + 1):
Kinrange(1, j+ 1
dpli]li] = (dpli]fi] + dpli - 1][k]) % MOD

ans=0
for i in range(1, n + 1)

ans = (ans + dp[mlfil) % MOD
return ans

n,m = map(intinput().split())
print(solve(n,m))

Pass Tests? |Z[

Qualitative - what is it changing?

SubError (%)
100
80
60
40
20
SyntaxError IndexError TypeError ValueError EOFError TimeoutError NameError

KeyError ImportError ZeroDivisionError

Else
WIORLTF “w RLTF

Figure 8: Error types (APPS), from RLTF: Reinforcement Learning from Unit Test Feedback [5]

19

Qualitative — what is it changing?

SubError (%)

SyntaxError IndexError TypeError ValueError EOFEmor Timeoutfrror NameEror KeyError ImportError ZeroDivisionError Else

WIORLTF “w RLTF

Figure 8: Error types (APPS), from RLTF: Reinforcement Learning from Unit Test Feedback [5]

programs that pass, especially for problems with introductory difficulty levels. The observed increase in
failure rate stems from the fixing of error codes, resulting in either pass or fail outcomes. This illustrate
that RLTF is more effective in addressing runtime and compiler errors compared to semantic errors, which
remain more challenging. Figure 2b illustrates the percentages of different sub-errors among erroneous results
before and after applying the RLTF method. Most errors show a decline in proportion after using the RLTF
method, particularly syntax errors. It is also noteworthy that the proportion of timeout errors exhibits
a minor increase, which can be attributed to the correction of other grammar-related errors resulting in
timeout errors.

Figure 9: RLTF: analogous RL method with similar performance
19

RL with policy gradient methods

- Directly optimizes reward
- Susceptible to reward hacking; requires good reward design

- Learning procedure adds complexity

20

RL with policy gradient methods

- Directly optimizes reward
- Susceptible to reward hacking; requires good reward design

- Learning procedure adds complexity

20

- Reinforcement learning
- Reward modeling
- Expert iteration

21

Reward modeling

Basic idea:

- Train a model Ry(y) to predict whether a program is correct
* Re(y) € [0,1], 0 means incorrect, 1 means correct
- At test time:

- Generate many programs, {y1, ..., Yk} ~ pa(:|x)
- Select the program with the highest score Ry (y)

22

Reward modeling

Basic idea:

- Train a model Ry(y) to predict whether a program is correct
* Re(y) € [0,1], 0 means incorrect, 1 means correct
- At test time:

- Generate many programs, {y1, ..., Yk} ~ pa(:|x)
- Select the program with the highest score Ry (y)

Rs(y): “reward model” or “learned verifier”

Test time procedure: “best-of-n”

22

Reward modeling

LLMs: investigated on math word problems [2]

60 Test Solve Rate (%)

50
40
© Openal 175B Fine-tuning
30
Research 20
Solving math word problems —
10
0 Training Set Size
T T T T T
500 1000 2000 4000 8000

23

Reward modeling: LEVER

Learning to Verify Language-to-Code Generation with Execution [6]

- Key difference: we can execute code

- Train a model pg(v|x, v, E(Y))
- visOor1
- X: input prompt
- y: generated program
- E(y) is the result of executing program y

24

Reward modeling: LEVER training

Given (x, €(y«))

- Generate {y1,...,Vk} ~ po(:|x)
- Add (X, Yk, E(Vr), V&) tO a set Sk
- Vg is 1if execution result matches gold result £(y.), 0 otherwise

|54

1
L"(Xv SX) = 7@ Z |Og p(vfé|Xa yk’ag(yk’))
k=1

25

Reward modeling: LEVER

GSMS8K: question + idiomatic program + answer variable

Input:

Carly recently graduated and is looking for work in a field she studied for. She
sent 200 job applications to companies in her state, and twice that number to
companies in other states. Calculate the total number of job applications she has
sent so far. |

n_job.apps.in_state = 200

n.-job._apps.-out.of_state = n_job_apps-in._state * 2

answer = n_job_apps.in.state + n_job.apps.out_of_state |

’answer’: 600

Output: yes

26

Reward modeling: LEVER

SPIDER/WIKITQ: question + SQL + linearized result table

Input:

-- question: List the name, born state and age of the heads of departments ordered
by age. |

-- SQL:|select name, born.state, age from head join management on head.head.id =
management .head.id order by age]|

—-- exec result:|/x| name born.state age| Dudley Hart California 52.0| Jeff Maggert
Delaware 53.0|Franklin Langham Connecticut 67.0| Billy Mayfair California 69.0]
K. J. Choi Alabama 69.0]|x/

Output: no

27

Reward modeling: LEVER

MBPP: task description + function + return type & value

Input:
description

Write a function to find the n-th power of individual elements in a list using lambda
function.

program

def nth.nums (nums,n) :
result_list = list (map(lambda x: X ** n, nums))
return (result_list)

execution

return: (list)=[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
return: (list)=[1000, 8000, 27000]

return: (list)=[248832, 759375]

Output: yes

28

Reward modeling: LEVER

At test time:

- Generate {y1,...,Vk} ~ po(:|x)
- Select the program yj with the highest score R(x, y).
* 1(X, Vi) = Po(VelX) - po(v = 11X, Vi, E(Vr))
——

LM score verifier score
: R(Xv yh’) = Zyk, with same exec result as yj f'(X, yk’)

29

Reward modeling: LEVER

Prob.
: Translate :?“"“1 SELECT name FROM students o,
language question where age > 20 AND age < 30 ’
&l into sQL Query Verifier
<o EX§mv1e SELECT COUNT(name) FROM students s
-- NL: What ... where age > 20 AND age < 30
SELECT ... E
+ SELECT COUNT(*) FROM students N
Generate ' where age < 30 AND age > 2 Verify
-- Example with
S e ey
5;”“"‘5 o :*‘e 2 SELECT student_num FROM students| Err: No
class are between where age_interval = “20-3@” column. .
and 30 years old?

Final Score

Figure 1: The illustration of LEVER using text-to-SQL as an example. It consists of three steps: 1) Generation: sample
programs from code LLMs based on the task input and few-shot exemplars; 2) Execution: obtain the execution results with
program executors; 3) Verification: using a learned verifier to output the probability of the program being correct based on
the NL, program and execution results.

30

Reward modeling: LEVER

NGreedy EML ®EP+ML [EP+Voting MLEVER mLEVERw/ogoldprog. mLEVERw/o exec.info = LEVER w/o exec. agg.
100.0 98.4

«++- Oracle

90.0

80.0

700

60.0

Execution Accuracy (%)

68.1
648650 643
50.

I I 582

527534 I

49,6 505

Nl [i

Spider wikiTQ

MBPP

Figure 2: Comparison of LEVER®* and baselines with Codex-Davinci. LEVER and its ablation results are in solid bars.

Figure 10: LEVER improves performance. Using execution info is important

31

Reward modeling:

ML+EP Oracle —e— LEVER Greedy
Spider wWTQ GSM
95 75 100
95 e
F90 70 IS
z 90
8 65]
§85 85
< 60
580 -/.——__. 80
5 55
I 75
575
50 70
70 45 65
0 25 50 0 25 50 0 50 100
Sample Size

Figure 11: Scaling the number of samples

32

Reward modeling:

- Does not require updating generator py

- Simple learning objective: standard maximum likelihood
- Strong performance

- Bounded by the generator’s capabilities

- Expensive at generation time

- Reward model is imperfect

33

- Reinforcement learning
- Reward modeling
- Expert iteration

34

Expert iteration

Alternate between search and learning:

- Search: Use an ‘expert model’ to find good outputs
- Learning: Fine-tune on the discovered outputs

- Repeat

35

Expert iteration

Thinking Fast and Slow
with Deep Learning and Tree Search

Thomas Anthony", Zheng Tian', and David Barber'2

!University College London
2Alan Turing Institute
“thomas . anthony. 140ucl . ac.uk

Abstract

Sequential decision making problems, such as structured prediction, robotic control,
and game playing, require a combination of planning policies and generalisation of
those plans. In this paper, we present Expert Iteration (EXIT), a novel reinforcement
learning algorithm which decomposes the problem into separate planning and
generalisation tasks. Planning new policies is performed by tree search, while a
deep neural network generalises those plans. Subsequently, tree search is improved
by using the neural network policy to guide search, increasing the strength of new
plans. In contrast, standard deep Reinforcement Learning algorithms rely on a
neural network not only to generalise plans, but to discover them too. We show that
EXIT outperforms REINFORCE for training a neural network to play the board
game Hex, and our final tree search agent, trained tabula rasa, defeats MOHEX 1.0,
the most recent Olympiad Champion player to be publicly released.

Figure 12: Anthony et al 2017

36

Expert iteration

For neural code generation:

- Search: Generate many programs, save those that succeed
- Learning: Fine-tune on the saved programs
- Repeat

37

Expert iteration

For neural code generation:

- Search: Generate many programs, save those that succeed
- Learning: Fine-tune on the saved programs
- Repeat

“Self-training”: the expert model is the current language model (plus
the binary execution feedback)

37

Self-training with execution [9]

Google DeepMind 2023-12-25

Beyond Human Data: Scaling Self-Training for
Problem-Solving with Language Models

Avi Singhli*, John D Co-Reyesl", Rishabh Agarwall’zi*,
Ankesh Anand!, Piyush Patil!, Xavier Garcial, Peter J. Liu!, James Harrison!, Jaehoon Lee!, Kelvin Xu!,

Aaron Parisi!, Abhishek Kumar?, Alex Alemi!, Alex Rizkowsky', Azade Nova!, Ben Adlam!, Bernd Bohnet!,
Gamaleldin Elsayed!, Hanie Sedghi!, Igor Mordatch?, Isabelle Simpson!, Izzeddin Gur!, Jasper Snoek!,
Jeffrey Pennington?, Jiri Hron!, Kathleen Kenealy?, Kevin Swersky!, Kshiteej Mahajan!, Laura Culp’, Lechao
Xiaol, Maxwell L Bileschi!, Noah Constant!, Roman Novak!, Rosanne Liu!, Tris Warkentin!, Yundi Qian!,

Yamini Bansal', Ethan Dyer!, Behnam Neyshabur!, Jascha Sohl-Dickstein!, Noah Fiedel!
“Contributed equally, ' Google DeepMind, 2 Mila

Builds on recent ideas, e.g. for reasoning [13, 12], generation [4], preference alignment [3].

38

Self-training with execution

Algorithm 1: ReST (Expectation-Maximization). Given a initial policy (e.g., pre-trained
LM), ReST®M jteratively applies Generate and Improve steps to update the policy.
Input: D: Training dataset, D, : Validation dataset, £L(x, y;0): loss, r(x, y): Non-negative
reward function, I: number of iterations, N: number of samples per context
fori=1toIdo
// Generate (E-step)
Generate dataset D; by sampling: D; = { (xf,yj)ljv’=1 st x/ ~ D, y/ ~ po(y|x)) }
Annotate D; with the reward r(x, y).
// Improve (M-step)
while reward improves on D,q do
| Optimise 6 to maximize objective: J(0) = E(x,y)~p, [r(x,y) log pg(y|x)]
end
end
Output: Policy pg

39

Self-training with execution

Hendrycks MATH

Pass@1 Performance (%)
w A D U U O
o w o w o

ul

Num iterations

® Palm-2-L (Train) ® Palm-2-L (Test)

Figure 13: On the MATH dataset, improves for multiple iterations

40

Self-training with execution

APPS (Introductory)

Pass@1 Performance (%)
B
o

Num iterations

® Palm-2-L (Train) ©® Palm-2-L (Test)

Figure 14: On a subset of APPS: initially improves, then overfits.

41

Self-training with execution

APPS (Introductory)

—— PalLM-2-L
PaLM-2-L (ReST)

40%

30%

20%

Pass @ K Test Accuracy (%)

10%

2 4 6 8 10
Num samples (K)

Figure 15: On a subset of APPS: improves pass@k

42

Connection with reinforcement learning

£RL(9) = Ex~D,y~p9(ylx) [R(X,)/)]

43

Connection with reinforcement learning

Lri(0) = Ex~D y~po(ylx) [R(x,)]
Policy gradient methods: interleave updates and generation

Ot < O+ a[Vg log pa(VIX)R(x, V)]

43

Connection with reinforcement learning

LRU(O) = Exup ympy (vix) [R(X V)]
Policy gradient methods: interleave updates and generation
Or41 ¢ 0t + a[Vg log po(V|X)R(X, 9)]
Self-training: generate a large dataset, then update

Oriq < arg max Exwp [Ey~p9t(yl><) [r(x,y) log pa(y|X)]

43

Connection with reinforcement learning

LRU(O) = Exup ympy (vix) [R(X V)]
Policy gradient methods: interleave updates and generation
Or41 ¢ 0t + a[Vg log po(V|X)R(X, 9)]
Self-training: generate a large dataset, then update

Oriq < arg max Exwp [Ey~p9t(yl><) [r(x,y) log pa(y|X)]

See the Rest-EM paper [9] for more details on the connection.

43

Self-training:

- Natural extension of best-of-n, which had good performance
- Simple learning objective: standard maximum likelihood

- Susceptible to overfitting

I

Three methods for learning from feedback:

- Directly optimize a reward with reinforcement learning
- Learn a reward, generate programs, select the best program

- Generate programs, save successful ones, train on them

45

Looking ahead:

- Each method has pros and cons
- Still a research frontier for code generation
- Other potential sources of feedback, e.g. natural language [1]'

TAnother research frontier; not covered due to time constraints.

46

References i

& A Chen.
Improving code generation by training with natural language
feedback.
ArXiv, abs /230316749, 2023.

[K Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek,). Hilton, R. Nakano, C. Hesse, and
J. Schulman.
Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

47

References ii

[@ H.Dong, W. Xiong, D. Goyal, Y. Zhang, W. Chow, R. Pan, S. Diao,
J. Zhang, K. SHUM, and T. Zhang.
RAFT: Reward ranked finetuning for generative foundation
model alighment.
Transactions on Machine Learning Research, 2023.

[§ C. Gulcehre, T. L. Paine, S. Srinivasan, K. Konyushkova, L. Weerts,
A. Sharma, A. Siddhant, A. Ahern, M. Wang, C. Gu, W. Macherey,
A. Doucet, O. Firat, and N. de Freitas.
Reinforced self-training (rest) for language modeling, 2023.

&). Liu, Y. Zhu, K. Xiao, Q. FU, X. Han, Y. Wei, and D. Ye.
RLTF: Reinforcement learning from unit test feedback.
Transactions on Machine Learning Research, 2023.

48

References iii

@ A Ni,S. lyer, D. Radev, V. Stoyanov, W--t. Yih, S. I. Wang, and X. V.

B
B

Lin.

Lever: Learning to verify language-to-code generation with
execution.

In Proceedings of the 40th International Conference on Machine
Learning (ICML'23), 2023.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms, 2017.

P. Shojaee, A. Jain, S. Tipirneni, and C. K. Reddy.
Execution-based code generation using deep reinforcement
learning.

Transactions on Machine Learning Research, 2023.

49

References iv

[@ A Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, P. J. Liu,
J. Harrison, J. Lee, K. Xu, A. Parisi, A. Kumar, A. Alemi, A. Rizkowsky,
A. Nova, B. Adlam, B. Bohnet, H. Sedghi, I. Mordatch, I. Simpson,
l. Gur, J. Snoek, J. Pennington, J. Hron, K. Kenealy, K. Swersky,
K. Mahajan, L. Culp, L. Xiao, M. L. Bileschi, N. Constant, R. Novak,
R. Liu, T. B. Warkentin, Y. Qian, E. Dyer, B. Neyshabur, J. N.
Sohl-Dickstein, and N. Fiedel.
Beyond human data: Scaling self-training for problem-solving
with language models.
ArXiv, abs/2312.06585, 2023.

50

References v

6 R.S.Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with
function approximation.
In Proceedings of the 12th International Conference on Neural
Information Processing Systems, NIPS'99, page 1057-1063,
Cambridge, MA, USA, 1999. MIT Press.

E R.J. williams.
Simple statistical gradient-following algorithms for
connectionist reinforcement learning.
Machine Learning, 8:229-256, 1992.

W Z Yuan, H.Yuan, C. Li, G. Dong, C. Tan, and C. Zhou.
Scaling relationship on learning mathematical reasoning with
large language models.
ArXiv, abs/2308.01825, 2023.

51

References vi

3 E. zelikman, Y. Wu, J. Mu, and N. Goodman.
STar: Bootstrapping reasoning with reasoning.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022.

@ D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford,
D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences.
ArXiv, abs/1909.08593, 2019.

52

