
Learning from [code-related] feedback

Sean Welleck

Neural Code Generation
Carnegie Mellon University
January 18, 2024

Course Part I

Part I: Foundations

• Learning
• Evaluation
• Inference
• Data

1

Language models

Language model learning pipeline

• Pretraining
• Gives a “foundation model”

• Adaptation
• Continued pretraining
• Fine-tuning
• Learning from feedback
• In-context learning / prompting

2

Language models

Problem: distribution mismatch

• Language model pθ fits distribution q
• E.g., code on the web

• Language model does not learn desired distribution q′

• E.g., code that passes tests

This can be for several reasons. For instance, not enough data, not
diverse enough data, limited model capacity.

3

Intuition

Observation 1: many signals are not explicitly in pretraining data

• whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Today: learning from feedback on generated programs

4

Intuition

Observation 1: many signals are not explicitly in pretraining data

• whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Today: learning from feedback on generated programs

4

Intuition

Observation 1: many signals are not explicitly in pretraining data

• whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Today: learning from feedback on generated programs

4

Outline

• Reinforcement learning
• Reward modeling
• Expert iteration

5

Reinforcement learning

Adjust the model so that it maximizes a reward function:

argmax
θ

Ex∼D,y∼pθ(·|x) [R(x, y)]︸ ︷︷ ︸
J(θ)

Example reward:

• R(x, y) = 1 if program y passes test cases

6

Reinforcement learning

General pattern:

• Generate data with the model, y ∼ pθ(·|x)
• Score the data, R(y)
• Update the model using data and rewards

At a high level:

• pθ′ ← A(pθ, {x},R)

7

Policy gradient methods [11, 10]

Generate program ŷ ∼ pθ(·|x)

Estimate the gradient of the expected reward with respect to θ:

∇θJ(θ) = Ex∼D,y∼pθ(y|x)∇θ log pθ(y|x)R(x, y) (1)

Use gradient descent to update model parameters, θ′ ← θ + α∇θ .

8

Example: PPO (proximal policy optimization) [7]

Various innovations to stabilize policy gradient (out of scope)

At the end, we get an alternative algorithm:

pθ′ ← APPO(pθ, {x},R)

9

Recap

RL: used to update a model using rewards and generated sequences.

• pθ′ ← A(pθ, {x},R)
• Policy gradient, PPO, …

How do we choose the reward?

10

Reward hacking

Issue 1: reward hacking

• Models can overfit to patterns in the reward
• Example:

• R(x, y) = 1 if program y compiles, 0 otherwise

Then generating y = print("hello world") for all x would
maximize reward.

11

Reward hacking: KL-divergence penalty [14]

Mitigation: KL-divergence penalty

• Keep the updated model close to the pretrained model
• RKL = −β log pθ(y|x)

p0(y|x)

DKL(pθ(y|x)∥p0(y|x)) =
∑
y
pθ(y|x) log

pθ(y|x)
p0(y|x)

= Ey∼pθ log
pθ(y|x)
p0(y|x)

≈ log
pθ(ŷ|x)
p0(ŷ|x)

,

where ŷ ∼ pθ(·|x), i.e. a single-sample Monte-Carlo approximation.

12

Reward hacking: KL-divergence penalty [14]

Mitigation: KL-divergence penalty

• Keep the updated model close to the pretrained model
• RKL = −β log pθ(y|x)

p0(y|x)

DKL(pθ(y|x)∥p0(y|x)) =
∑
y
pθ(y|x) log

pθ(y|x)
p0(y|x)

= Ey∼pθ log
pθ(y|x)
p0(y|x)

≈ log
pθ(ŷ|x)
p0(ŷ|x)

,

where ŷ ∼ pθ(·|x), i.e. a single-sample Monte-Carlo approximation.

12

Sparse reward

Issue 2: sparse reward

• The reward may be 0 for many programs; we only occasionally
see a positive reward

Mitigation: engineer the reward function

13

Example: PPOCoder
Execution-based Code Generation using Deep RL [8]

Execution

• Rexecution(x, ŷ): 1 if program ŷ compiles and passes tests cases

Syntactic matching score

• Rsyntax(x, ŷ, y∗): overlap between abstract syntax tree of y and y∗

Semantic matching score

• Rsemantics(x, ŷ, y∗): overlap between dataflow graph of y and y∗

R = Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward

14

Example: PPOCoder
Execution-based Code Generation using Deep RL [8]

Execution

• Rexecution(x, ŷ): 1 if program ŷ compiles and passes tests cases

Syntactic matching score

• Rsyntax(x, ŷ, y∗): overlap between abstract syntax tree of y and y∗

Semantic matching score

• Rsemantics(x, ŷ, y∗): overlap between dataflow graph of y and y∗

R = Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward

14

Example: PPOCoder
Execution-based Code Generation using Deep RL [8]

Execution

• Rexecution(x, ŷ): 1 if program ŷ compiles and passes tests cases

Syntactic matching score

• Rsyntax(x, ŷ, y∗): overlap between abstract syntax tree of y and y∗

Semantic matching score

• Rsemantics(x, ŷ, y∗): overlap between dataflow graph of y and y∗

R = Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward

14

Example: PPOCoder
Execution-based Code Generation using Deep RL [8]

Execution

• Rexecution(x, ŷ): 1 if program ŷ compiles and passes tests cases

Syntactic matching score

• Rsyntax(x, ŷ, y∗): overlap between abstract syntax tree of y and y∗

Semantic matching score

• Rsemantics(x, ŷ, y∗): overlap between dataflow graph of y and y∗

R = Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward

14

PPOCoder results

Figure 1: Compilation rate increases while holding other metrics constant

15

PPOCoder results

Figure 2: APPS Figure 3: MBPP (transfer)

16

PPOCoder ablations

Figure 4: Reward terms
(MBPP)

Figure 5: RL objective
(MBPP)

Figure 6: KL
penalty

17

Qualitative – what is it changing?

Figure 7: Reward terms (MBPP)

18

Qualitative – what is it changing?

Figure 8: Error types (APPS), from RLTF: Reinforcement Learning from Unit Test Feedback [5]

Figure 9: RLTF: analogous RL method with similar performance

19

Qualitative – what is it changing?

Figure 8: Error types (APPS), from RLTF: Reinforcement Learning from Unit Test Feedback [5]

Figure 9: RLTF: analogous RL method with similar performance
19

Tradeoffs

RL with policy gradient methods

• Directly optimizes reward
• Susceptible to reward hacking; requires good reward design
• Learning procedure adds complexity
• So far, improvements may be explained by syntax/index fixes

20

Tradeoffs

RL with policy gradient methods

• Directly optimizes reward
• Susceptible to reward hacking; requires good reward design
• Learning procedure adds complexity
• So far, improvements may be explained by syntax/index fixes

20

Outline

• Reinforcement learning
• Reward modeling
• Expert iteration

21

Reward modeling

Basic idea:

• Train a model Rϕ(y) to predict whether a program is correct
• Rϕ(y) ∈ [0, 1], 0 means incorrect, 1 means correct

• At test time:
• Generate many programs, {y1, . . . , yK} ∼ pθ(·|x)
• Select the program with the highest score Rϕ(y)

Rϕ(y): “reward model” or “learned verifier”

Test time procedure: “best-of-n”

22

Reward modeling

Basic idea:

• Train a model Rϕ(y) to predict whether a program is correct
• Rϕ(y) ∈ [0, 1], 0 means incorrect, 1 means correct

• At test time:
• Generate many programs, {y1, . . . , yK} ∼ pθ(·|x)
• Select the program with the highest score Rϕ(y)

Rϕ(y): “reward model” or “learned verifier”

Test time procedure: “best-of-n”

22

Reward modeling

LLMs: investigated on math word problems [2]

23

Reward modeling: LEVER
Learning to Verify Language-to-Code Generation with Execution [6]

• Key difference: we can execute code
• Train a model pϕ(v|x, y, E(y))

• v is 0 or 1
• x: input prompt
• y: generated program
• E(y) is the result of executing program y

24

Reward modeling: LEVER training

Given (x, E(y∗))

• Generate {y1, . . . , yK} ∼ pθ(·|x)
• Add (x, yk, E(yk), vk) to a set Sx

• vk is 1 if execution result matches gold result E(y∗), 0 otherwise

L(x, Sx) = −
1
|Sx|

|Sx|∑
k=1

log p(vk|x, yk, E(yk))

25

Reward modeling: LEVER

26

Reward modeling: LEVER

27

Reward modeling: LEVER

28

Reward modeling: LEVER

At test time:

• Generate {y1, . . . , yK} ∼ pθ(·|x)
• Select the program yk with the highest score R(x, yk).

• r(x, yk) = pθ(yk|x)︸ ︷︷ ︸
LM score

· pϕ(v = 1|x, yk, E(yk))︸ ︷︷ ︸
verifier score

• R(x, yk) =
∑

yk′ with same exec result as yk
r(x, yk′)

29

Reward modeling: LEVER

30

Reward modeling: LEVER

Figure 10: LEVER improves performance. Using execution info is important

31

Reward modeling: LEVER

Figure 11: Scaling the number of samples

32

Tradeoffs

Reward modeling:

• Does not require updating generator pθ
• Simple learning objective: standard maximum likelihood
• Strong performance
• Bounded by the generator’s capabilities
• Expensive at generation time
• Reward model is imperfect

33

Outline

• Reinforcement learning
• Reward modeling
• Expert iteration

34

Expert iteration

Alternate between search and learning:

• Search: Use an ‘expert model’ to find good outputs
• Learning: Fine-tune on the discovered outputs
• Repeat

35

Expert iteration

Figure 12: Anthony et al 2017

36

Expert iteration

For neural code generation:

• Search: Generate many programs, save those that succeed
• Learning: Fine-tune on the saved programs
• Repeat

“Self-training”: the expert model is the current language model (plus
the binary execution feedback)

37

Expert iteration

For neural code generation:

• Search: Generate many programs, save those that succeed
• Learning: Fine-tune on the saved programs
• Repeat

“Self-training”: the expert model is the current language model (plus
the binary execution feedback)

37

Self-training with execution [9]

Builds on recent ideas, e.g. for reasoning [13, 12], generation [4], preference alignment [3].

38

Self-training with execution

39

Self-training with execution

Figure 13: On the MATH dataset, improves for multiple iterations

40

Self-training with execution

Figure 14: On a subset of APPS: initially improves, then overfits.

41

Self-training with execution

Figure 15: On a subset of APPS: improves pass@k

42

Connection with reinforcement learning

LRL(θ) = Ex∼D,y∼pθ(y|x) [R(x, y)]

Policy gradient methods: interleave updates and generation

θt+1 ← θt + α [θ log pθ(ŷ|x)R(x, ŷ)]

Self-training: generate a large dataset, then update

θt+1 ← argmax
θ

Ex∼D

[
Ey∼pθt (y|x) [r(x, y) log pθ(y|x)]

]
See the Rest-EM paper [9] for more details on the connection.

43

Connection with reinforcement learning

LRL(θ) = Ex∼D,y∼pθ(y|x) [R(x, y)]

Policy gradient methods: interleave updates and generation

θt+1 ← θt + α [θ log pθ(ŷ|x)R(x, ŷ)]

Self-training: generate a large dataset, then update

θt+1 ← argmax
θ

Ex∼D

[
Ey∼pθt (y|x) [r(x, y) log pθ(y|x)]

]
See the Rest-EM paper [9] for more details on the connection.

43

Connection with reinforcement learning

LRL(θ) = Ex∼D,y∼pθ(y|x) [R(x, y)]

Policy gradient methods: interleave updates and generation

θt+1 ← θt + α [θ log pθ(ŷ|x)R(x, ŷ)]

Self-training: generate a large dataset, then update

θt+1 ← argmax
θ

Ex∼D

[
Ey∼pθt (y|x) [r(x, y) log pθ(y|x)]

]

See the Rest-EM paper [9] for more details on the connection.

43

Connection with reinforcement learning

LRL(θ) = Ex∼D,y∼pθ(y|x) [R(x, y)]

Policy gradient methods: interleave updates and generation

θt+1 ← θt + α [θ log pθ(ŷ|x)R(x, ŷ)]

Self-training: generate a large dataset, then update

θt+1 ← argmax
θ

Ex∼D

[
Ey∼pθt (y|x) [r(x, y) log pθ(y|x)]

]
See the Rest-EM paper [9] for more details on the connection.

43

Recap

Self-training:

• Natural extension of best-of-n, which had good performance
• Simple learning objective: standard maximum likelihood
• Susceptible to overfitting
• Very recent; ongoing investigation!

44

Summary

Three methods for learning from feedback:

• Directly optimize a reward with reinforcement learning
• Learn a reward, generate programs, select the best program
• Generate programs, save successful ones, train on them

45

Recap

Looking ahead:

• Each method has pros and cons
• Still a research frontier for code generation
• Other potential sources of feedback, e.g. natural language [1]1

1Another research frontier; not covered due to time constraints.

46

References i

A. Chen.
Improving code generation by training with natural language
feedback.
ArXiv, abs/2303.16749, 2023.
K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and
J. Schulman.
Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

47

References ii

H. Dong, W. Xiong, D. Goyal, Y. Zhang, W. Chow, R. Pan, S. Diao,
J. Zhang, K. SHUM, and T. Zhang.
RAFT: Reward ranked finetuning for generative foundation
model alignment.
Transactions on Machine Learning Research, 2023.

C. Gulcehre, T. L. Paine, S. Srinivasan, K. Konyushkova, L. Weerts,
A. Sharma, A. Siddhant, A. Ahern, M. Wang, C. Gu, W. Macherey,
A. Doucet, O. Firat, and N. de Freitas.
Reinforced self-training (rest) for language modeling, 2023.
J. Liu, Y. Zhu, K. Xiao, Q. FU, X. Han, Y. Wei, and D. Ye.
RLTF: Reinforcement learning from unit test feedback.
Transactions on Machine Learning Research, 2023.

48

References iii

A. Ni, S. Iyer, D. Radev, V. Stoyanov, W.-t. Yih, S. I. Wang, and X. V.
Lin.
Lever: Learning to verify language-to-code generation with
execution.
In Proceedings of the 40th International Conference on Machine
Learning (ICML’23), 2023.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms, 2017.
P. Shojaee, A. Jain, S. Tipirneni, and C. K. Reddy.
Execution-based code generation using deep reinforcement
learning.
Transactions on Machine Learning Research, 2023.

49

References iv

A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, P. J. Liu,
J. Harrison, J. Lee, K. Xu, A. Parisi, A. Kumar, A. Alemi, A. Rizkowsky,
A. Nova, B. Adlam, B. Bohnet, H. Sedghi, I. Mordatch, I. Simpson,
I. Gur, J. Snoek, J. Pennington, J. Hron, K. Kenealy, K. Swersky,
K. Mahajan, L. Culp, L. Xiao, M. L. Bileschi, N. Constant, R. Novak,
R. Liu, T. B. Warkentin, Y. Qian, E. Dyer, B. Neyshabur, J. N.
Sohl-Dickstein, and N. Fiedel.
Beyond human data: Scaling self-training for problem-solving
with language models.
ArXiv, abs/2312.06585, 2023.

50

References v

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with
function approximation.
In Proceedings of the 12th International Conference on Neural
Information Processing Systems, NIPS’99, page 1057–1063,
Cambridge, MA, USA, 1999. MIT Press.

R. J. Williams.
Simple statistical gradient-following algorithms for
connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

Z. Yuan, H. Yuan, C. Li, G. Dong, C. Tan, and C. Zhou.
Scaling relationship on learning mathematical reasoning with
large language models.
ArXiv, abs/2308.01825, 2023.

51

References vi

E. Zelikman, Y. Wu, J. Mu, and N. Goodman.
STar: Bootstrapping reasoning with reasoning.
In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford,
D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences.
ArXiv, abs/1909.08593, 2019.

52

