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Course Part I

Part I: Foundations

• Learning
• Evaluation
• Inference
• Data
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Language models

Language model learning pipeline

• Pretraining
• Gives a “foundation model”

• Adaptation
• Continued pretraining
• Fine-tuning
• Learning from feedback
• In-context learning / prompting
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Language models

Problem: distribution mismatch

• Language model pθ fits distribution q
• E.g., code on the web

• Language model does not learn desired distribution q′

• E.g., code that passes tests

This can be for several reasons. For instance, not enough data, not
diverse enough data, limited model capacity.
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Intuition

Observation 1: many signals are not explicitly in pretraining data

• whether a program compiles,
whether a program passes test cases,
whether a specific user prefers one program over the other, ...

Observation 2: we can get these via feedback on generated programs

Today: learning from feedback on generated programs
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Outline

• Reinforcement learning
• Reward modeling
• Expert iteration
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Reinforcement learning

Adjust the model so that it maximizes a reward function:

argmax
θ

Ex∼D,y∼pθ(·|x) [R(x, y)]︸ ︷︷ ︸
J(θ)

Example reward:

• R(x, y) = 1 if program y passes test cases
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Reinforcement learning

General pattern:

• Generate data with the model, y ∼ pθ(·|x)
• Score the data, R(y)
• Update the model using data and rewards

At a high level:

• pθ′ ← A(pθ, {x},R)

7



Policy gradient methods [11, 10]

Generate program ŷ ∼ pθ(·|x)

Estimate the gradient of the expected reward with respect to θ:

∇θJ(θ) = Ex∼D,y∼pθ(y|x)∇θ log pθ(y|x)R(x, y) (1)

Use gradient descent to update model parameters, θ′ ← θ + α∇θ .
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Example: PPO (proximal policy optimization) [7]

Various innovations to stabilize policy gradient (out of scope)

At the end, we get an alternative algorithm:

pθ′ ← APPO(pθ, {x},R)
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Recap

RL: used to update a model using rewards and generated sequences.

• pθ′ ← A(pθ, {x},R)
• Policy gradient, PPO, …

How do we choose the reward?
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Reward hacking

Issue 1: reward hacking

• Models can overfit to patterns in the reward
• Example:

• R(x, y) = 1 if program y compiles, 0 otherwise

Then generating y = print("hello world") for all x would
maximize reward.
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Reward hacking: KL-divergence penalty [14]

Mitigation: KL-divergence penalty

• Keep the updated model close to the pretrained model
• RKL = −β log pθ(y|x)

p0(y|x)

DKL(pθ(y|x)∥p0(y|x)) =
∑
y
pθ(y|x) log

pθ(y|x)
p0(y|x)

= Ey∼pθ log
pθ(y|x)
p0(y|x)

≈ log
pθ(ŷ|x)
p0(ŷ|x)

,

where ŷ ∼ pθ(·|x), i.e. a single-sample Monte-Carlo approximation.
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Sparse reward

Issue 2: sparse reward

• The reward may be 0 for many programs; we only occasionally
see a positive reward

Mitigation: engineer the reward function
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Example: PPOCoder
Execution-based Code Generation using Deep RL [8]

Execution

• Rexecution(x, ŷ): 1 if program ŷ compiles and passes tests cases

Syntactic matching score

• Rsyntax(x, ŷ, y∗): overlap between abstract syntax tree of y and y∗

Semantic matching score

• Rsemantics(x, ŷ, y∗): overlap between dataflow graph of y and y∗

R = Rexecution + Rsyntax + Rsemantics + RKL

Run PPO using the reward
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PPOCoder results

Figure 1: Compilation rate increases while holding other metrics constant
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PPOCoder results

Figure 2: APPS Figure 3: MBPP (transfer)

16



PPOCoder ablations

Figure 4: Reward terms
(MBPP)

Figure 5: RL objective
(MBPP)

Figure 6: KL
penalty
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Qualitative – what is it changing?

Figure 7: Reward terms (MBPP)
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Qualitative – what is it changing?

Figure 8: Error types (APPS), from RLTF: Reinforcement Learning from Unit Test Feedback [5]

Figure 9: RLTF: analogous RL method with similar performance
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Tradeoffs

RL with policy gradient methods

• Directly optimizes reward
• Susceptible to reward hacking; requires good reward design
• Learning procedure adds complexity
• So far, improvements may be explained by syntax/index fixes
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Reward modeling

Basic idea:

• Train a model Rϕ(y) to predict whether a program is correct
• Rϕ(y) ∈ [0, 1], 0 means incorrect, 1 means correct

• At test time:
• Generate many programs, {y1, . . . , yK} ∼ pθ(·|x)
• Select the program with the highest score Rϕ(y)

Rϕ(y): “reward model” or “learned verifier”

Test time procedure: “best-of-n”
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Reward modeling

LLMs: investigated on math word problems [2]
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Reward modeling: LEVER
Learning to Verify Language-to-Code Generation with Execution [6]

• Key difference: we can execute code
• Train a model pϕ(v|x, y, E(y))

• v is 0 or 1
• x: input prompt
• y: generated program
• E(y) is the result of executing program y
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Reward modeling: LEVER training

Given (x, E(y∗))

• Generate {y1, . . . , yK} ∼ pθ(·|x)
• Add (x, yk, E(yk), vk) to a set Sx

• vk is 1 if execution result matches gold result E(y∗), 0 otherwise

L(x, Sx) = −
1
|Sx|

|Sx|∑
k=1

log p(vk|x, yk, E(yk))
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Reward modeling: LEVER
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Reward modeling: LEVER
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Reward modeling: LEVER
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Reward modeling: LEVER

At test time:

• Generate {y1, . . . , yK} ∼ pθ(·|x)
• Select the program yk with the highest score R(x, yk).

• r(x, yk) = pθ(yk|x)︸ ︷︷ ︸
LM score

· pϕ(v = 1|x, yk, E(yk))︸ ︷︷ ︸
verifier score

• R(x, yk) =
∑

yk′ with same exec result as yk
r(x, yk′)
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Reward modeling: LEVER
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Reward modeling: LEVER

Figure 10: LEVER improves performance. Using execution info is important
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Reward modeling: LEVER

Figure 11: Scaling the number of samples
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Tradeoffs

Reward modeling:

• Does not require updating generator pθ
• Simple learning objective: standard maximum likelihood
• Strong performance
• Bounded by the generator’s capabilities
• Expensive at generation time
• Reward model is imperfect
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Outline

• Reinforcement learning
• Reward modeling
• Expert iteration
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Expert iteration

Alternate between search and learning:

• Search: Use an ‘expert model’ to find good outputs
• Learning: Fine-tune on the discovered outputs
• Repeat
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Expert iteration

Figure 12: Anthony et al 2017
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Expert iteration

For neural code generation:

• Search: Generate many programs, save those that succeed
• Learning: Fine-tune on the saved programs
• Repeat

“Self-training”: the expert model is the current language model (plus
the binary execution feedback)
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Self-training with execution [9]

Builds on recent ideas, e.g. for reasoning [13, 12], generation [4], preference alignment [3].
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Self-training with execution
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Self-training with execution

Figure 13: On the MATH dataset, improves for multiple iterations
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Self-training with execution

Figure 14: On a subset of APPS: initially improves, then overfits.
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Self-training with execution

Figure 15: On a subset of APPS: improves pass@k
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Connection with reinforcement learning

LRL(θ) = Ex∼D,y∼pθ(y|x) [R(x, y)]

Policy gradient methods: interleave updates and generation

θt+1 ← θt + α [∇θ log pθ(ŷ|x)R(x, ŷ)]

Self-training: generate a large dataset, then update

θt+1 ← argmax
θ

Ex∼D

[
Ey∼pθt (y|x) [r(x, y) log pθ(y|x)]

]
See the Rest-EM paper [9] for more details on the connection.
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Recap

Self-training:

• Natural extension of best-of-n, which had good performance
• Simple learning objective: standard maximum likelihood
• Susceptible to overfitting
• Very recent; ongoing investigation!
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Summary

Three methods for learning from feedback:

• Directly optimize a reward with reinforcement learning
• Learn a reward, generate programs, select the best program
• Generate programs, save successful ones, train on them
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Recap

Looking ahead:

• Each method has pros and cons
• Still a research frontier for code generation
• Other potential sources of feedback, e.g. natural language [1]1

1Another research frontier; not covered due to time constraints.
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