
Evaluation: Metrics and Benchmarks
Daniel Fried

11-891: Neural Code Generation 
https://cmu-codegen.github.io/s2024/

With slides from Zora Wang and Nikitha Rao



The NL2Code Task

▸ Given a natural language instruction Q, generate code 
implementation C

Calculate sum over all 
rows of 2D numpy array a.sum(axis=1)



The Landscape for NL2Code Generation
▸ Transition of Evaluation Metrics: 

▹ Lexical
▹ Neural based metrics
▹ Test case execution

▸ Domain Coverage 
▹ Built-in grammar: sum([1, 2, 4])
▹ Domain-specific: data science
▹ Open domain: diverse Python libraries

▸ Functional Complexity 
▹ Simple (toy) functions: e.g., LeetCode
▹ Class level
▹ Repository level

▸ Test Automation
▹ Human-written tests
▹ Fuzzing methods
▹ Integrating LLMs

time2021

the pre-LLM era

HumanEval & Codex

domain 
coverage

test 
automation

functional 
complexity

HumanEval



Pre-2020

NL2Bash. Lin et al. 2018. 

▸ Most code snippets were short, and evaluated using BLEU or exact match.
▸ Datasets were fairly large, with dedicated training sets.



Pre-2020
▸ Most code snippets were short, and evaluated using BLEU or exact match.
▸ Datasets were fairly large, with dedicated training sets.

NL2Bash. Lin et al. 2018. 



Evaluation Metrics



Reference Matching: BLEU

▸ Developed for machine translation (Papineni et al. 2002)
▸ Compares n-gram overlap between predicted and reference
▸ Typically, uses n-grams up to 4 (BLEU-4)

Example from Graham Neubig



Reference Matching: CodeBLEU
Ren et al. 2020

Higher weight for keywords Match syntactic subtrees Match data dependency graphs



▸ When evaluating evaluation 
metrics, check correlation with 
human judgements.

▸ In CodeBLEU: rate code outputs 
on a Likert scale of general quality 
(1=very bad; 5=very good)

Reference Matching: CodeBLEU
Ren et al. 2020



Issues: Evaluations Are Not Rigorous

[i - 1 for i 
in l]

ret_list = []
for e in l:

ret_list.append(e + 1)
return ret_list

Return list with elements 
incremented by 1

[i + 1 for i 
in l]

query

Solution

Output #1

Output #2

High lexical overlap 
with the solution

Low lexical overlap with 
the canonical solution,
But actually correct

l = [1, 2, 3]
Test

[0, 1, 2]

[2, 3, 4]



HumanEval Benchmark

▸ Evaluation: test case execution
▸ 164 hand-written examples, by authors of the paper
▸ Why human-written?
▹ “It is important for these tasks to be hand-written, since our 

models are trained on a large fraction of GitHub, which already 
contains solutions to problems from a variety of sources. ”



MBPP: Mostly Basic Python Programs
▸ Similar to HumanEval, but a bit easier
▸ 974 short Python problems, written by crowdworkers
▹ 58% mathematical, 43% list processing, 19% string processing

Austin et al. 2021



MBPP: Mostly Basic Python Programs
▸ Model performance is sensitive to sampling temperature and 

number of candidates (similar findings in HumanEval/Codex 
paper)

Austin et al. 2021



MBPP: Mostly Basic Python Programs

▸ BLEU against a reference solution is uncorrelated with whether 
samples pass execution tests (similar findings in Codex paper).

Austin et al. 2021



MBPP: Mostly Basic Python Programs
▸ Model evaluated is a large Google LLM, LaMDA, trained mostly on 

natural language, which has some interaction ability.



Automated & Improved Testing
▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases
▸ Prompt ChatGPT with the GT solution, some inputs, and instructions to 

generate more

Liu et al. 2023



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases
▸ Fuzzing: mutate inputs to the functions, apply the groundtruth function, 

and use the input-output pair to make a new test case.



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases
▸ Optionally, minifiy the test sets while preserving code coverage and edge 

case detection.



Automated & Improved Testing

Liu et al. 2023

▸ EvalPlus: use LLMs and fuzzing (type-aware mutation) to create test cases
▸ These extra tests substantially reduce the pass@k of many models!



MultiPL-E
▸ Key idea: it’s relatively easy to translate test cases on simple types (e.g. no 

matrices or functions) from Python to other languages.
▸ This allows porting HumanEval & MBPP to 18 other languages.

Cassano et al. 2022



MultiPL-E
▸ Models are generally better on “high-resource” languages with more code 

on GitHub.
▸ More analysis of this in the Data lecture, with Starcoder.

Cassano et al. 2022



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸ Code might be easily editable to achieve a good solution.
Levenshtein distance: number of character edits required to transform.



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸ Dibia et al. compare metrics to evaluate 5 model outputs on 
HumanEval.
▹ EditDistance, BLEU, Pass@1

▸ Professional programmers with Python experience rate on:
▹ Accuracy: judge if the snippets are functionally equivalent 

(judging is easier than writing!)
▹ Value: How useful is the snippet as a starting point?
▹ Effort: how much effort to modify the solution into a correct one?



Incorrect Code Can Be Valuable Too!

Dibia et al. 2022

▸ Value is nearly perfectly correlated with effort (accuracy less so).
▸ Of all metrics, Pass@1 is most correlated with Value
▸ But, Edit sim > BLEU and a combination is best (as dissimilar, 

incorrect code is bad).



CodeBERTScore: Model-based Evaluation
▸ Captures some intuitions about incorrect code being useful
▸ BLEU and edit distance only give points for exactly matching code
▸ Takes NL code descriptions into account

▸ Use vector similarity from CodeBERT representations
▸ Recall: every reference vector has >=1 candidate vector with high similarity
▸ Precision: every candidate vector has >=1 reference vector with high similarity

Zhou et al. 2023



Domains of Code



HumanEval Looks Like Toy Examples?

▸ HumanEval Examples Real-World Development 
Code



Broadening Domains
▸ Leetcode Style: HumanEval, APPS, MBPP
▹ Manually written or collected from code contest websites
▹ Only uses Python built-in grammar

▸ Limited Domains: e.g., Data Science
▹ DS-1000: StackOverflow questions
▹ ARCADE: Interactive Jupyter Notebooks
▹ … …

▸ Open Domain: ODEX
▹ 79 Python libraries
▹ Four natural languages



APPS

▸ 10,000 
problems taken 
from contest 
and exercise 
sites

▸ 3 difficulty 
levels

▸ Has test cases



CodeContests (AlphaCode)
▸ Similar to APPS but focuses on improving test coverage, via input 

mutation (like EvalPlus).

▸ Manual inspection shows high false-positive rate of model-produced 
solutions.



DS-1000
▸ 1,000 data science problems, based on StackOverflow questions
▸ Domain-specific test cases, e.g. matplotlib plots have their elements 

programmatically extracted



DS-1000

▸ Perturb the problems to reduce chances of memorization, since 
models may have been trained on StackOverflow

▸ ”Surface” perturbations: don’t change solution. “Semantic”: do, 
but try to keep difficulty the same (e.g. max -> min)



ARCADE

▸ Executable problems from Jupyter notebooks



ODEX: Open-Domain, with Evaluation

▸ Larger Domain Coverage

▸ Test execution on real-world coding queries
▹ Collected from StackOverflow questions

▸ Support four natural languages as input
▹ English, Spanish, Japanese, Russian



ODEX: Open-Domain, with Evaluation

▸ Larger Domain Coverage

▸ Test execution on real-world coding queries
▸ Support four natural languages as input



ODEX: Unique Challenges for Execution

Closed-domain code: easy to execute and verify

Open-domain code:
▸ Random outputs

▸ Specialized verification

▸ (Potentially) not reproducible queries
▹ HTTP requests, e.g., requests.post(“https://def.xyz”, data={‘key’: ‘value’})

random.randint(3, 5)

3
4

5

assert func([1, 2, 10]) == [2, 3, 11]

https://def.xyz


Significant Performance Gaps: Open vs. Closed

▸ Although Codex performs better overall
▸ CodeGen has smaller domain gaps 



Code Complexity



Functional Complexity

▸ Function Level: HumanEval, MBPP
▸ Class Level: ClassEval



Functional Complexity
▸ Function Level: HumanEval, MBPP
▸ Class Level: ClassEval
▸ Repository Level: 
▹ RepoCoder
▸ Retrieval-augmented generation
▸ Multiple iterations

▹ RepoEval
▸ Collected 14 Github Repositories
▸ Metrics: 
▹ exact match
▹ exact similarity
▹ execution


