Evaluation: Metrics and Benchmarks

Daniel Fried 11-891: Neural Code Generation https://cmu-codegen.github.io/s2024/

Language Technologies Institute

With slides from Zora Wang and Nikitha Rao

The NL2Code Task

Given a natural language instruction Q, generate code implementation C

The Landscape for NL2Code Generation

- Transition of Evaluation Metrics:
 - Lexical
 - Neural based metrics
 - Test case execution
- Domain Coverage
 - Built-in grammar: sum([1, 2, 4])
 - Domain-specific: data science
 - Open domain: diverse Python libraries
- Functional Complexity
 - Simple (toy) functions: e.g., LeetCode
 - Class level
 - Repository level
- Test Automation
 - Human-written tests
 - Fuzzing methods
 - Integrating LLMs

Pre-2020

Most code snippets were short, and evaluated using BLEU or exact match.
Datasets were fairly large, with dedicated training sets.

Natural Language	Bash Command(s)
find .java files in the current direc-	grep -l "TODO" *.java
tory tree that contain the pattern	findname "*.java" -exec grep -il "TODO" {} \;
'TODO' and print their names	findname "*.java" xargs -I {} grep -l "TODO" {}
display the 5 largest files in the cur-	findtype f sort -nk 5,5 tail -5
rent directory and its sub-directories	du -a . sort -rh head -n5
Teni allectory and its sub-allectories	findtype f -printf '%s %p\n' sort -rn head -n5
search for all jpg images on the sys-	tar -cvf images.tar \$(find / -type f -name *.jpg)
tem and archive them to tar ball "im-	tar -rvf images.tar \$(find / -type f -name *.jpg)
ages.tar"	<pre>find / -type f -name "*.jpg" -exec tar -cvf images.tar {} \;</pre>

	Train	Dev	Test
# pairs	8,090	609	606
# unique nls	7,340	549	547

Pre-2020

Most code snippets were short, and evaluated using BLEU or exact match.
Datasets were fairly large, with dedicated training sets.

					• 11	• 11	NI	0.1	a .:	T / 1 1
Dataset	PL	#	#	#	Avg. #	Avg. #	NL	Code	Semantic	Introduced
		pairs	words	tokens	w. in nl	t. in code	collection	collection	alignment	by
IFTTT	DSL	86,960	-	_	7.0	21.8				(Quirk et al., 2015)
C#2NL*	C#	66,015	24,857	91,156	12	38	scraped	scraped	Noisy	(Iyer et al., 2016)
SQL2NL*	SQL	32,337	10,086	1,287	9	46	scraped	scraped		(lyer et al., 2010)
RegexLib	Regex	3,619	13,491	1 79*	36.4	58.8*				(Zhong et al., 2018)
HeartStone	Python	665	_	_	7	352*	game card	game card	Good [™]	(Ling at al 2016)
MTG	Java	13,297	_	_	21	1,080*	description	source code		(Ling et al., 2016)
SteOC	Python	147,546	17,635	137,123	9	86	extracted	extracted	Naim	(Was at al 2018)
StaQC	SQL	119,519	9,920	21,413	9	60	using ML	using ML	Noisy	(Yao et al., 2018)
NL2RX	Regex	10,000	560	45 ^{*†}	10.6	26*	synthesized &	armth a sime d	Very	(Locascio et al., 2016)
WikiSQL	SQL	80,654	-	-	-	-	paraphrased	synthesized	Good	(Zhong et al., 2017)
NLMAPS	DSL	2,380	1,014	_	10.9	16.0	synthesized	expert		(Haas and Riezler, 2016)
	DOL	2,500	1,014		10.7	10.0	given code	written		(That's and Riezier, 2010)
Jobs640*	DSL	640	391	58 [†]	9.8	22.9]	(Tang and Mooney, 2001)
GEO880	DSL	880	284	60^{\dagger}	7.6	19.1	waan wiittan			(Zelle and Mooney, 1996)
Freebase917	DSL	917	_	_	—	_	user written	expert	Very	(Cai and Yates, 2013)
ATIS*	DSL	5,410	936	176 [†]	11.1	28.1		written	Good	(Dahl et al., 1994)
WebQSP	DSL	4,737	_	_	_	_	search log	given NL		(Yih et al., 2016)
NL2RX-KB13	Regex	824	715	85*†	7.1	19.0*	turker written			(Kushman and Barzilay, 2013)
Django*	Python	18,805	_	-	14.3	_	expert written	scraped		(Oda et al., 2015)
NL2Bash	Bash	9,305	7,790	6,234	11.7	7.7	given code	scraped		Ours

NL2Bash. Lin et al. 2018.

Evaluation Metrics

Reference Matching: BLEU

- Developed for machine translation (Papineni et al. 2002)
- Compares n-gram overlap between predicted and reference
- Typically, uses n-grams up to 4 (BLEU-4)

Ren et al. 2020

Reference Matching: CodeBLEU

Higher weight for keywords

Weighted N-Gram Match

Match syntactic subtrees

Match data dependency graphs

CodeBLEU = $\alpha \cdot N$ – Gram Match (BLEU) + $\beta \cdot$ Weighted N-Gram Match + $\gamma \cdot$ Syntactic AST Match + $\delta \cdot$ Semantic Data-flow Match

Ren et al. 2020

Reference Matching: CodeBLEU

- When evaluating evaluation metrics, check correlation with human judgements.
- In CodeBLEU: rate code outputs on a Likert scale of general quality (1=very bad; 5=very good)

Figure 5: BLEU and CodeBLEU predict human evaluation scores. (a) Text-to-code; (b) Code translation.

Issues: Evaluations Are Not Rigorous

HumanEval Benchmark

- Evaluation: test case execution
- 164 hand-written examples, by authors of the paper
- Why human-written?
 - It is important for these tasks to be hand-written, since our models are trained on a large fraction of GitHub, which already contains solutions to problems from a variety of sources."

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

- Similar to HumanEval, but a bit easier
- > 974 short Python problems, written by crowdworkers
 - ▷ 58% mathematical, 43% list processing, 19% string processing

Model performance is sensitive to sampling temperature and number of candidates (similar findings in HumanEval/Codex paper)

Figure 9: Higher temperatures achieve better scaling with more samples, but perform worse with a smaller budget.

Austin et al. 2021

BLEU against a reference solution is uncorrelated with whether samples pass execution tests (similar findings in Codex paper).

Figure 10: Comparison of BLEU score and synthesis performance for the 137B parameter model. No strong correlation is observed.

Austin et al. 2021

Model evaluated is a large Google LLM, LaMDA, trained mostly on natural language, which has some interaction ability.

Figure 12: An overview of the "flow" of the human-model collaboration experiments. The human gives a description of the desired program and then guides the model toward the correct solution via dialog.

Figure 13: Percent of problems solved as the number of human dialog interventions increases. With 4 interventions, the solve rate increases from 30% to over 65%. Except for the purple horizontal baseline (which corresponds to 5 samples from the model), all pass-rates in this figure were computed using a single sample from the model.

- EvalPlus: use LLMs and *fuzzing* (type-aware mutation) to create test cases
- Prompt ChatGPT with the GT solution, some inputs, and instructions to generate more

- EvalPlus: use LLMs and *fuzzing* (type-aware mutation) to create test cases
- Fuzzing: mutate inputs to the functions, apply the groundtruth function, and use the input-output pair to make a new test case.

Туре	Mutation	Туре	Mutation
int float	Returns $x \pm 1$	List	$\begin{cases} \text{Remove/repeat a random item } x[i] \\ \text{Insert/replace } x[i] \text{ with } \text{Mutate}(x[i]) \end{cases}$
bool	Returns a random boolean	Tuple	$\hat{R}eturns Tuple(Mutate(List(x)))$
NoneType	Returns None	Set	Returns Set(Mutate(List(x)))
str	$\begin{cases} \text{Remove a sub-string } s \\ \text{Repeat a sub-string } s \\ \text{Replace } s \text{ with } \text{Mutate}(s) \end{cases}$	Dict	$\begin{cases} \text{Remove a key-value pair } k \to v \\ \text{Update } k \to v \text{ to } k \to \text{Mutate}(v) \\ \text{Insert Mutate}(k) \to \text{Mutate}(v) \end{cases}$

Table 1: List of basic type-aware mutations over input x.

- EvalPlus: use LLMs and *fuzzing* (type-aware mutation) to create test cases
- Optionally, minify the test sets while preserving code coverage and edge case detection.
 Table 2: Operation of Evol Diversion of

		#Tes	#Tas	ks		
	Avg.	Medium	Min.	Max.		
HUMANEVAL	9.6	7.0	1	105 ²		
HUMANEVAL ⁺	764.1	982.5	12	1,100	164	1
HumanEval ⁺ -mini	16.1	13.0	5	110		
	Size	pass@k	$k=1^{\star}$	k=1	k=10	k=100
GPT-4 [49]	N/A	base	88.4			
OF 1-4 [49]	\mathbf{N}/\mathbf{A}	+extra	76.2			
Phind-CodeLlama [52]	34B	base	71.3	71.6	90.5	96.2
Timu-CoueLiama [32]	J4D	+extra	67.1	67.0	85.0	92.5
WizardCoder-CodeLlama [38]	34B	base	73.2	61.6	85.2	94.5
WizardCoder-CodeLiania [58]	JHD	+extra	64.6	54.5	78.6	88.9
ChatGPT [48]	N/A	base	73.2	69.4	88.6	94.0
	11/71	+extra	63.4	62.5	82.1	91.1

Table 2: Overview of EvalPlus-improved benchmarks.

Liu et al. 2023

- EvalPlus: use LLMs and *fuzzing* (type-aware mutation) to create test cases
- These extra tests substantially reduce the pass@k of many models!

	Size	pass@k	$k=1^{\star}$	k=1	k = 10	$k{=}100$
	N/A	base	88.4			
GPT-4 [49]	\mathbf{N}/\mathbf{A}	+extra	76.2			
Phind-CodeLlama [52]	34B	base	71.3	71.6	90.5	96.2
Fillind-CodeLialita [52]	34D	+extra	67.1	67.0	85.0	92.5
WizardCoder-CodeLlama [38]	34B	base	73.2	61.6	85.2	94.5
WizardCoder-CodeLiania [58]	54D	+extra	64.6	54.5	78.6	88.9
ChatGPT [48]	N/A	base	73.2	69.4	88.6	94.0
	$\mathbf{N} \mathbf{A}$	+extra	63.4	62.5	82.1	91.1

MultiPL-E

- Key idea: it's relatively easy to translate test cases on simple types (e.g. no matrices or functions) from Python to other languages.
- This allows porting HumanEval & MBPP to 18 other languages.

Figure 4: Example of a translated assertion.

(a) Original Python docstring from HumanEval #95.

Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. (b) Terminology translated to Perl.

Given a hash, return 1 if all keys are strings in lower case or all keys are strings in upper case, else return "". The function should return "" is the given hash is empty.

Figure 5: A Python docstring and its Perl translation. Errors (e.g., "is" for "if") are from the original benchmark.

Cassano et al. 2022

MultiPL-E

- Models are generally better on "high-resource" languages with more code on GitHub.
- More analysis of this in the Data lecture, with Starcoder.

Incorrect Code Can Be Valuable Too!

Code might be easily editable to achieve a good solution.

Levenshtein distance: number of character edits required to transform.

EDIT-SIM =
$$1 - \frac{lev(gen, ref)}{max(len(gen), len(ref))}$$

Dibia et al. 2022

Incorrect Code Can Be Valuable Too!

- Dibia et al. compare metrics to evaluate 5 model outputs on HumanEval.
 - EditDistance, BLEU, Pass@1
- Professional programmers with Python experience rate on:
 - Accuracy: judge if the snippets are functionally equivalent (judging is easier than writing!)
 - Value: How useful is the snippet as a starting point?
 - **Effort**: how much effort to modify the solution into a correct one?

Incorrect Code Can Be Valuable Too!

- Value is nearly perfectly correlated with effort (accuracy less so).
- Of all metrics, Pass@1 is most correlated with Value
- But, Edit sim > BLEU and a combination is best (as dissimilar, incorrect code is bad).

COMBINED = min(1.0, PASS + EDIT-SIM)

Dibia et al. 2022

CodeBERTScore: Model-based Evaluation

- Captures some intuitions about incorrect code being useful
- BLEU and edit distance only give points for exactly matching code
- Takes NL code descriptions into account
- Use vector similarity from CodeBERT representations
- Recall: every reference vector has >=1 candidate vector with high similarity
- Precision: every candidate vector has >=1 reference vector with high similarity

Domains of Code

HumanEval Looks Like Toy Examples?

HumanEval Examples

def incr_list(l: list):

"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
""""

return [i + 1 for i in 1]

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.

Examples

solution([5, 8, 7, 1]) =⇒12
solution([3, 3, 3, 3, 3]) =⇒9
solution([30, 13, 24, 321]) =⇒0
"""

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

Real-World Development

Asking the user for input until they give a valid response

Asked 9 years, 6 months ago Modified 1 year, 5 months ago Viewed 1.0m times

A lam writing a program that accepts user input.
750
#note: Python 2.7 users should use `raw_input`, the equivalent of 3.X's `input`
age = int(input("Please enter your age: "))
if age >= 18:
 print("You are able to vote in the United States!")
else:
 print("You are not able to vote in the United States.")

Public Public			⊙ Watch 1.1k ▾ 💱	Fork 22.9k 👻 🌟 Starred 114k 💌
	tags	Go to file Add	file - <> Code -	About
hi-sushanta Removed the redundant	SiLUActivation class. (#27136)	✓ 4991216 1 hour ago	• • 14,388 commits	😂 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
.circleci	Limit to inferior fsspec version (#27010)		last week	Phuggingface.co/transformers
github	Dev version		2 hours ago	python nlp machine-learning
docker	[core / Quantization] AWQ integration	n (#27045)	2 days ago	natural-language-processing
docs	translate peft.md to chinese (#27215)		2 hours ago	deep-learning tensorflow pytorch
examples	Dev version		2 hours ago	transformer speech-recognition seq2seq flax pretrained-models
model_cards	Update URL for Hub PR docs (#17532)		last year	language-models nlp-library
notebooks	Update README.md (#25941)		2 months ago	language-model hacktoberfest bert jax pytorch-transformers model-hub
scripts	Fix stale bot for locked issues (#26711)		3 weeks and	jax pytorch-transformers model-hub

Broadening Domains

- Leetcode Style: HumanEval, APPS, MBPP
 - Manually written or collected from code contest websites
 - Only uses Python built-in grammar
- Limited Domains: e.g., Data Science
 - DS-1000: StackOverflow questions
 - ARCADE: Interactive Jupyter Notebooks
 -
- Open Domain: ODEX
 - 79 Python libraries
 - Four natural languages

	NumPy	SciPy	Pandas	Tens	orFlow	PyTorch	Scikit-learn	Matplotlib
distribution something li distributed in	given a min and m	ax value (the R e max, base] that i id max.	returns n log unifori		import sp result =	icy.stats	uniform.rvs(a = min	n, b = max, size = n)
That is, giver uniform dist	n range of x, I want	t to get samples	of given size (n) tha	t suit log-		Aut	omatic Evaluation	······
A: <code> import nu min = 1</code>	umpy as np				<pre>min = 1 max = np n = 1000 ans =</pre>	0	by Reference solut:	ion
<pre>max = np n = 10000 BEGIN SOU <code> [insert] </code></pre>	0				from sc # Kolmo # from	ipy.stats impor gorov-Smirnov T similar distrib	est judges whether	
END SOLU <code> print(res </code>							face form constraints should not appear in	Syntax Tree

NumPy example problem involving randomness, requiring the use of a specialist knowledge test.

APPS

Problem

10,000
 problems taken
 from contest
 and exercise
 sites

```
3 difficulty levels
```

Has test cases

You are given two integers n and m. Calculate the number of pairs of arrays (a, b) such that: the length of both arrays is equal to m; each element of each array is an integer between 1 and n (inclusive); $a_i \leq b_i$ for any index i from 1 to m; array a is sorted in non-descending order; array b is sorted in non-ascending order. As the result can be very large, you should print it modulo $10^9 + 7$. Input: The only line contains two integers n and m ($1 \leq n \leq 1000$, $1 \leq m \leq 10$). Output: Print one integer – the number of arrays a and b satisfying the conditions described above modulo $10^9 + 7$.

Model Output

```
n, m = map(int, input().split())
mod = 10**9+7

fact = [1, 1]
factinv = [1, 1]
inv = [0, 1]

for i in range(2, n+1):
   fact.append((fact[-1] * i) % mod)
   inv.append((-inv[mod % i] * (mod//i)) % mod)
   factinv.append((factinv[-1] * inv[-1]) % mod)

def cmb(n, r, mod):
   if (r < 0) or (n < r):
        return 0
   r = min(r, n - r)
   return fact[n] * factinv[r] * factinv[n-r] % mod</pre>
```

print((cmb(n, m, mod) * cmb(m-1, n-1, mod)) % mod)

CodeContests (AlphaCode)

Similar to APPS but focuses on improving test coverage, via input mutation (like EvalPlus).

		Tes	sts per pro	blem	Solutions per problem (% correct)			
Split	Problems	Example	Hidden	Generated	C++	Python	Java	
Train	13328	2.0	14.8	79.1	493.4 (27%)	281.1 (47%)	147.9 (46%)	
Valid	117	1.5	12.9	190.0	231.6 (47%)	137.2 (55%)	131.1 (54%)	
Test	165	1.7	9.4	192.7	196.0 (45%)	97.3 (54%)	105.2 (51%)	

Manual inspection shows high false-positive rate of model-produced solutions.

Dataset	Tests / problem	False Positive (FP) Rate	FP or Slow Rate
APPS	20.99	60%	70%
HumanEval	7.77	30%	N/A
CodeContests raw	12.4	62%	88%
CodeContests	203.7	4%	46%

DS-1000

- 1,000 data science problems, based on StackOverflow questions
- Domain-specific test cases, e.g. matplotlib plots have their elements programmatically extracted

Manually Selecting and Modifying StackOverflow Problems

```
Here is a sample dataframe:
   df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
-
  I'd like to add inverses of each existing column to the dataframe
and ... [omitted for brevity]
try:
5
   inv df = df.join(df.apply(lambda x: 1/x).add_prefix("inv_"))
```


B Implementing Automatic Tests

```
4 Perturbing Original Problem
```

```
Test cases
            ...[omit for brevity]
                                               look like so:
pd.testing.assert_frame_equal(result,
                   ans)
          Surface-form constraints
for and while should not appear in Syntax
                   Tree
```

```
... I'd like to apply the exponential function to each
existing column ... The resulting dataframe should
result = pd.DataFrame({"A": [1, 2, 3],
          "B": [4, 5, 6],
          "exp_A": [e^1, e^2, e^3],
          "exp B": [e^4, e^5, e^6]})
... [omitted for brevity]
```

2 Adding Code Context

```
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],
                   "B": [4, 5, 6]})
### BEGIN SOLUTION
[insert]
### END SOLUTION
print(result)
```

5 Red Teaming

```
df = pd.DataFrame({"A": [1, 2, 3],
                    "B": [4, 5, 6]})
### BEGIN SOLUTION
# A known WRONG SOLUTION
result = df.join(df.apply(lambda
x:math.e**x).add_prefix('exp_'))
### END SOLUTION
print(result)
```

DS-1000

- Perturb the problems to reduce chances of memorization, since models may have been trained on StackOverflow
- "Surface" perturbations: don't change solution. "Semantic": do, but try to keep difficulty the same (e.g. max -> min)

	Pandas	NumPy	Scikit-learn	SciPy 7	TensorFlow	PyTorch	Overall
Origin _{surface}	37.3	61.2	52.6	33.0	64.9	64.8	53.2
Surface	31.9 -5.4	58.4 <u>-2.8</u>	55.7 + 3.1	32.1 -0.9	58.0 <u>-8.9</u>	50.0 - 14.8	49.8 - 3.4
Origin _{semantic}	36.8	56.7	60.6*	40.3	71.3	65.1	47.2
Semantic	33.2 -3.6	49.0 -7.7	$38.9^{*}-21.7$	34.3 -6.0	42.5 - 25.8	30.5 - 34.6	38.2 - 9.0
Origin _{difficult}	39.9	52.7	5.0^{*}	58.1	73.0*	53.8 [*]	46.8
Difficult Rewrite	17.7 -22.2	27.1 - 25.6	$0.0^{*}-5.0$	13.8 -44.3	38.0^{*} -35.0	28.8^{*} -25.0	21.0 - 25.8

ARCADE

Má

Executable problems from Jupyter notebooks

```
Which countries host at least two Olympic games?
# Solution: Let's solve this problem step-by-step. preamble
# Step 1: Get the counts each country hosted Olympics
count_df = df['Country'].value_counts()
# Step 2: Get the rows whose average score is above 90
filtered_df = count_df[count_df >= 2]
# Step 3: Get the country names as a list explanation
filtered_df.index.tolist()
```

```
[1] import pandas as pd
  df = pd.read_csv('stores.csv')
```

- [2] # Schema of Dataframes:
 - # Columns in df with example values:
 - # Stu_Name (Mike), Engineering (90), English (89), Math (92)

```
[3] Get the students with an average score above 90
for science subjects
```

```
[3a] ► Vanilla Prediction (no exemplars):
```

```
df['Science_Avg'] = (df['Engineering']+df['Math'])/2
df[df['Science_Avg'] > 90][['Stu_Name', 'Science_Avg']]
```

Models	pass@30	# API	Lines of Code (LoC)	Comment Lines	Tokens / Line	
Baseline (Tab. 2)	47.7	4.9	2.3	0.1	21.1	3.2
+ More Context	49.3	4.9	2.3	0	21.1	3.1
Prompt	ting with A	<i>Addition</i>	al Few-shot I	Exemplars		
Vanilla Code	49.9	5.3	2.4	0.1	20.8	3.1
Step-by-Step Code	51.9	5.6	3.2	0.1	17.8	2.7
+ Preamble	51.9	5.9	3.5	0.2	16.9	2.5
+ Pre. $+$ Explanation	52.5	6.8	4.2	3.3	14.9	2.2

```
[3b] >Step-by-Step Prompting (with exemplars):
# Solution: Let's solve this problem step-by-step. preamble
# Step 1: Create a new column with the average score of
# engineering and math explanation
df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2
# Step 2: Get the rows whose average score is above 90
df_score_above_90 = df[df['Science_Avg'] > 90]
# Step 3: Return the student name and average scores
result = df score above 90[['Stu Name', 'Science Avg']]
```

ODEX: Open-Domain, with Evaluation

- Test execution on real-world coding queries
 - Collected from StackOverflow questions
- Support four natural languages as input
 - English, Spanish, Japanese, Russian

	<pre>return requests.post(url, files=files, data=data)</pre>	a
import requests def function(files, url, data): """multipartのリクエストで複数のデータ`files`, `data`を`url'にPOSTする (POST multiple data `files`, `data` to `url' with multipart request)	<pre># test case r = requests.Response() r.status_code = 200 requests.post = Mock(return_value = r) file_path = 'a.txt'</pre>	

Dataset	Samples	Domain	Executable	e? Avg. Test Cases	Data Source	NL
JuICe (Agashe et al., 2019)	1,981	open	×	-	GitHub Notebooks	en
HumanEval (Chen et al., 2021)	164	4	 Image: A set of the set of the	7.7	Hand-written	en
MBPP (Austin et al., 2021)	974	8	 Image: A set of the set of the	3.0	Hand-written	en
APPS (Hendrycks et al., 2021)	10,000	0	 Image: A set of the set of the	13.2	Competitions	en
DSP (Chandel et al., 2022)	1,119	16	 Image: A second s	2.1	Github Notebooks	en
MTPB (Nijkamp et al., 2022)	115	8	1	5.0	Hand-written	en
Exe-DS (Huang et al., 2022)	534	28	1	-	GitHub Notebooks	en
DS-1000 (Lai et al., 2022)	1,000	7	✓	1.6	StackOverflow	en
CoNaLa (Yin et al., 2018)	2,879	open	×	-	StackOverflow	en
MCoNaLa (Wang et al., 2022)	896	open	×	-	StackOverflow	es, ja, ru
ODEX	945	79	✓	1.8	StackOverflow Hand-Written	en, es, ja, ru
(Calculate the improper integral given by from the number `n` to infinity)	της τυπότιση τ			<pre>return sympy.integrate(f, (s</pre>	ympy.symbols('x'), n, sympy.c	d
return	(2)2)2)2)		x f n	<pre>test case = sympy.symbols('x') = (x * x) = 1 ssert str(function(f, n)) == '</pre>	00'	

ODEX: Unique Challenges for Execution

Closed-domain code: easy to execute and verify

Open-domain code:

- Random outputs
- random.randint(3, 5)
- assert func([1, 2, 10]) == [2, 3, 11]

Specialized verification

- Potentially) not reproducible queries
 - HTTP requests, e.g., requests.post("https://def.xyz", data={'key': 'value'})

	In [4]: assert (a == b)	
<pre>In [1]: import numpy as np</pre>	ValueError Cell In[4], line 1 > 1 assert (a == b)	Traceback (most recent call last)
<pre>In [2]: a = np.array([1, 2, 3])</pre>	ValueError: The truth value of an	array with more than one element is ambigue
	<pre>In [5]: np.array_equal(a, b)</pre>	
<pre>In [3]: b = np.array([1, 2, 3])</pre>	Out[5]: True	

Significant Performance Gaps: Open vs. Closed

- Although Codex performs better overall
- CodeGen has smaller domain gaps

Figure 7: CODEX (left) and CODEGEN (right) pass@1 on open- and closed-domain problems in each language.

Code Complexity

Fu	from datetime import datetic class VendingMachine: ""This is a class to simul coins, purchasing products of	late a vending machine, including adding products, inserting		
		displaying product information definit(self):	viewing balance, replenishing product inventory, and on. """ Class Description	Γ.
 Function Level: HumanEval, MBF Class Level: ClassEval 		Initializes the vending m """ self.inventory= [] self. balance= {}	achine's inventory and balance. Class Constructor	
		def purchase_item(self, ite """ Purchases a product purchase.	em_name): Method Signature from the vending machine and returns the balance after the Functional Description	
HumanEval Function Test METADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}	<pre>def test_purchase_item (self): vm = VendingMachine() vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}} vm.balance = 1.25 self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 9}}) def test_purchase_item_2(self): vm = VendingMachine() vm.inventory = {'Coke': {'price': 1.25, 'quantity': 9}}) def test_purchase_item_2(self): vm = VendingMachine() vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}} vm.balance = 1.25 self.assertEqual(vm.purchase_item('Pizza'), False)</pre> def setUp(self) -> None: self.vm = VendingMachine() self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 9}})		ClassEval Class Test class VendingMachineTestMain (unittest.TestCase):	
<pre>def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False</pre>			self.vm = VendingMachine() self.vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}	Fixtures: etUp
 MBPP Function Test ["assert get_ludic(10) == [1, 2, 3, 5, 7]", "assert get_ludic(25) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25]",]			<pre>def test_all(self): self.assertEqual(vm.insert_coin(1.25), 1.25) self.assertEqual(vm.purchase_item('Coke'), 0.0) self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quant self.assertEqual(vm.restock_item('Coke', 10), True) self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quant self.assertEqual(vm.display_items(), 'Coke - \$1.25 [19]') </pre>	

"Write a python function to find the first repeated character in a given string."

Figure 1: Examples in Existing Benchmarks

urns False.	Parameter/Return Description
<pre>>>> vendingMachine.inventory = {'Coke': {'p >>> vendingMachine.restock_item('Coke', 1) True >>> vendingMachine.inventory {'Coke': {'price': 1.25, 'quantity': 20}}</pre>	rice': 1.25, 'quantity': 10}} D) Example Input/Output

Figure 2: An Example of Class Skeleton in ClassEval

Functional Complexity

- Function Level: HumanEval, MBPP
- Class Level: ClassEval
- Repository Level:
 - RepoCoder
 - Retrieval-augmented generation
 - Multiple iterations
 - RepoEval
 - Collected 14 Github Repositories
 - Metrics:
 - exact match
 - exact similarity
 - execution

Below are some referential code fragments **Retrieved** from other files: Code # the below code fragment can be found in: # tests/test pipelines common.py @unittest.skipIf(torch device != "cuda") # def test to device(self): components = self.get dummy components() pipe = self.pipeline class(**components) pipe.progress bar(disable=None) pipe.to("cpu") """Based on above, complete the following code:""" @unittest.skipIf(torch device != "cuda") Unfinished def test float16 inference(self): Code components = self.get dummy components() Model pipe = self.pipeline_class(**components) pipe.to(torch_device) Prediction

Figure 3: A visual example demonstrating the format of the RepoCoder prompt, which combines the retrieved code snippets from the repository with the unfinished code present in the target file.