
Data (and some modeling)
Daniel Fried

11-891: Neural Code Generation
https://cmu-codegen.github.io/s2024/

With slides from the BigCode project

What Makes a Model Good?

[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022, Li et al. 2023]

Function pass rate on HumanEval Python [Chen et al. 2021] by amount of Python data & model scale:

PaLM-Coder

34%
StarCoder

CodeGen-Mono
Codex-12B [Chen et al. 2021]

50% 56%
DSC-33BDSC-6B

The Stack, SantaCoder, and StarCoder

The Stack: Dataset

[Kocetkov et al. 2022]

The Stack: Dataset

[Kocetkov et al. 2022]

The Stack: Dataset

MinHash Near-Deduplication

The Stack: Python Models
▸ Possible to approximate Codex-12B performance with permissively licensed

data? Train 350M models on Python
▸ Deduplication always improves performance

(https://huggingface.co/blog/dedup)
▸ License filtering hurts, but there’s enough data available to match Chen et al.

2021

180 GB

Python Data

740 GB

191 GB

80 GB

Exact-dedup?

SantaCoder: Overview

▸ Preparation for a big run: explorations at 1B scale
▸ Data: The Stack
▸ Tokenizer: BPE following GPT-2 recipe; use a digit splitter
▸ Ablations
▹ Multi-query attention and infilling (FIM, Bavarian et al. 2022)
▹ Data filtering

LinearLinear

AttentionAttention Scaled dot-product attention

Linear LinearLinearLinear LinearLinearLinear

Q K V

Concat

Linear

Attention heads

Shared key, value
projection parameters
across heads

Shazeer, 2019

Multi-Query Attention
▸ Designed to reduce memory-bandwidth cost to speed up inference

SantaCoder: Model Ablations

▸ Infilling (FIM) and MQA “for cheap”

SantaCoder: Data Filtering Ablations
▸ Remove repos with < 5 stars

- Hurts substantially!

▸ Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

▸ More aggressive near-duplicate filtering
+ Very slight improvements

▸ Remove files with low character-to-token ratios
+ Very slight improvements

SantaCoder: Final Model

▸ 1B parameter, with infilling (FIM) and multi-query attention
▸ 268GB of data: 118B tokens. Java, JavaScript, Python
▸ ~6 days on 96 V100s

We follow the natural distribution and sample data from 86 languages
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

StarCoder: A Large-Scale Multilingual Model

C
7% C#

6%
C++
6%

Java
11%

JavaScript
8%

Markdown
10%

PHP
8%

Python
8%

Issues
7%

Commits
4%

78 other
languages

25%

StarCoder: Data Selection
▸ Selected 86 languages to be used in training out of the 358 in the Stack
▸ Included:

▹ Languages with more than 500 MB of data
▹ Languages ranked within the top 50 by one of two commonly used rankings of language

popularity.
▸ Excluded:

▹ languages that are no longer actively supported
▹ configuration languages
▹ D and Swift (human error!)

▸ Limited:
▹ Data formats like JSON and YAML
▹ Long lines
▹ Low alpha-numeric characters
▹ HTML

StarCoder: Data Inspection
▸ Randomly selected 1000 files for

each programming language
extension

▸ 18 BigCode members verified 300
extensions
▹ Excluded 36 extensions
▹ Decide whether to keep or

remove long line filter and
alpha filter for each extension

Spreadsheet available!

https://docs.google.com/spreadsheets/d/1Lk-pTk_rXI__fCgixr7ZWSi8wR09Zzd2j_G90J80r00/edit?usp=sharing

PII dataset annotations

▸ Data composition
▹ 12,000 code files
▹ 7,000 pre-filtered to probably have PII, 5,000 random
▹ 31 programming languages

▸ PII Annotation
▹ 7 entities: Names, Usernames, Emails, IP addresses, keys, passwords,

and IDs
▹ 1,399 crowd-workers from Toloka

▸ Model
▹ Bidirectional Transformer similar to BERT-base
▹ Same vocabulary as StarCoder
▹ ~125M params
▹ https://huggingface.co/bigcode/starencoder

▸ Pre-training
▹ Follows data mix of StarCoder
▸ Commits and Issues included

▹ Trained for 400B tokens
▸ Masked language modeling + next “sentence” prediction objective

▹ https://github.com/bigcode-project/bigcode-encoder

StarEncoder

https://huggingface.co/bigcode/starencoder
https://github.com/bigcode-project/bigcode-encoder

Named entity recognition (NER) training
● Fine-tune StarEncoder with a linear classification

tagging layer on 6 PII target classes

Pseudo-labeling
● Take 18 000 files and label them (noisily) with an

ensemble of two NER models: 113 000 entities

(x7 times increase of labeled entities)

PII Models

Jupyter Notebooks

Python
Julia
R
Scala
Bash
Java
Q#
C++
MATLAB
Powershell
…

Guesslang

1.4M+

Jupyter - scripts

Jupyter -
notebooks

Markdown + Code + Output

1M+

Jupyter - structured

Jupyter Notebooks

GitHub Data

Issues (discussion threads) Commits and Commit Messages

Recap: What About Data Reuse?

▸ Mueninghoff et al.
were able to train up
to 4 epochs on fixed
data before seeing
significant
degradation relative
to using new data

(Harm)

● Tweet
● Details in blog post

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Recap: Scaling Laws

(Harm)

▸ With a fixed compute budget
(number of GPU days), can
train a larger model on fewer
tokens, or a smaller model on
more tokens

▸ Scaling laws predict (for a
given pre-training dataset,
and compute budget), what
size Transformer and number
of tokens will produce the
best loss

● Tweet
● Details in blog post

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Chinchilla Optimality Ignores Inference

(Harm)

▸ Using a smaller model than recommended by the Chinchilla scaling
laws comes at a cost to training compute, but it can be small

● Tweet
● Details in blog post

https://www.harmdevries.com/post/model-size-vs-compute-overhead/

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Flash Attention

→ up to 4x speedup over standard attention
→ scale sequence length up to 8192 tokens.

[Dao et al. 2022]

StarCoder Models
▸ StarCoderBase
▹ 15.5B parameters, trained on 1T tokens (~3 epochs)
▸ This is much smaller than Chinchilla optimal, but we were

aiming for inference efficiency
▸Multiple epochs didn’t seem to hurt

▹ ~1 month on 512 80GB A100s
▹ Megatron-LM with BF16 and FlashAttention

▸ StarCoder
▹ Continued training on 35B tokens of Python (two epochs)

Evaluation Harness: Unified framework for efficient code evaluation

▸ Data parallelism for fast text generation with accelerate

▸ Unified framework for 7+ code benchmarks: HumanEval, MultiPL-E in 18
programming languages, DS-1000, PaL …

▸ Docker containers for code execution

Official version: https://github.com/bigcode-project/bigcode-evaluation-harness
VLLM fork (may be faster): https://github.com/iNeil77/vllm-code-harness/tree/main

MultiPL-E

▸ Translations of the HumanEval
benchmark into other programming
languages.

▸ Together, StarCoderBase and
StarCoder outperform OpenAI’s code-
cushman-001 on HumanEval in 12
languages.

▸ Surprisingly, StarCoder outperforms
StarCoderBase on 9 languages in
addition to Python.

MultiPL-E translated HumanEval results

StarCoderBase: Performance Over Training

StarCoderBase: Performance By Data

▸ How correlated is code completion
performance for a language with the
amount of data available for a
language?

▸ Train model for 200B tokens (on all
languages). Evaluate on all languages,
getting a dot for each language.
Observe a strong correlation.

▸ Continue training, evaluate again at
400B tokens. The correlation remains
strong, and line shifts upward.

Language Competition?
▸ InCoder saw slight competition between languages at the 1.3B

param scale:

▸ But is there competition among languages in these large models?

Scaling Laws for Mixed-Modal Models

Aghajanyan and Yu et al. 2023

▸ In multi-modal settings, modalities compete when models are
small; can synergize when models are large.

DS-1000: Practical data tasks requiring API use

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Python return-type prediction
(InCoder/TypeWriter benchmarks)

TypeScript type inference (TypeWeaver
benchmarks)

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Evaluating Infilling

▸ Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
▸ Demonstrates StarCoder can benefit from information within long files or repositories.
▸ Longer contexts provides noticeable decreases in perplexity.

Testing 8K Window: Perplexity with Long Contexts

- StarcoderBase performs
better with PAL than with
CoT

- Outperforms CodeGen-
16B and LLaMA-13B

(Raymond)

Non-Trivial Natural Language Abilities
▸ Surprisingly reasonable performance on some natural language reasoning tasks
▸ CodeGen < StarCoderBase < LLaMA

Reasoning Tasks in HELM

Multiple levels of data
attribution, documentation tools!

Am I in The Stack?

Stack: Data Portrait
(stack.dataportraits.org)

StarCoder: Dataset Search 🔍
● Lightweight checks for other demos/plugin!
● We can analyze the data; end users can

interact
● StarCoder might be one of the most

documented LLMs + dataset combos

Membership Checking and Indexing

https://huggingface.co/spaces/bigcode/in-the-stack
https://stack.dataportraits.org/
https://huggingface.co/spaces/bigcode/search

DeepSeek Coder

DeepSeek Coder

▸ 1.3B, 6.7B, and 33B parameter models

▸ Trained from scratch on 2 Trillion tokens of code from 87
languages

▸ FIM loss, and 16K context length

DeepSeek Coder: Data

▸ 87% code, 10% code-related English NL, 3% code-unrelated Chinese
NL

▸ Pre-training: 800GB, 2 Trillion tokens.
▹ StarCoder filtering and less aggressive deduplication (repo-level)
▹ Also remove code with syntax errors, poor readability, low

modularity
▹ May have up-sampled Python relative to the natural distribution?
▹ Probably not license-filtered?

DeepSeek Coder: Repo-Level Context

▸ Parse file dependencies and arrange repo files in the context
window using a topological ordering.

▸ Theoretically can handle 64K tokens, but “empirical
observations suggest that the model delivers its most reliable
outputs within a 16K token range”

InCoder 6B
(mixed)

DeepSeek Coder: Data, Data, Data

Codex-12B
(mixed)

StarCoder-15B
(mixed)

DeepSeek Coder: Results
▸ MultiPL-E HumanEval and MBPP

▸ DS-1000

Recap: Scaling laws of transfer

Hernandez et al. 2021

DeepSeek Coder: Effects of Transfer

▸ V-1.5: start with a model trained on lots of NL text (DeepSeek-
LLM), then fine-tune on 2T tokens (70% code, 30% NL)

▸ Instruct: fine-tune on 2B tokens of instructions (details unclear)

DeepSeek Coder: Example from Instruct-33B

https://chat.deepseek.com/coder

What Makes a Model Good?
Data size, model size, data filtering, optimization quality, and competition/synergies among
training data...

PaLM-Coder

34%
StarCoder

CodeGen-Mono
Codex-12B [Chen et al. 2021]

50% 56%
DSC-33BDSC-6B

Questions?

