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What Makes a Model Good?

[Compiled from Chen et al. 2021, Xu et al. 2021, Li et al. 2021, Fried et al. 2022, Nijkamp et al. 2022, Chowdhery et al. 2022, Li et al. 2023]

Function pass rate on HumanEval Python [Chen et al. 2021] by amount of Python data & model scale:

PaLM-Coder

34%
StarCoder

CodeGen-Mono
Codex-12B [Chen et al. 2021]

50% 56%
DSC-33BDSC-6B



The Stack, SantaCoder, and StarCoder



The Stack: Dataset

[Kocetkov et al. 2022]



The Stack: Dataset

[Kocetkov et al. 2022]



The Stack: Dataset 

MinHash Near-Deduplication



The Stack: Python Models
▸ Possible to approximate Codex-12B performance with permissively licensed 

data? Train 350M models on Python
▸ Deduplication always improves performance 

(https://huggingface.co/blog/dedup)
▸ License filtering hurts, but there’s enough data available to match Chen et al. 

2021

180 GB

Python Data

740 GB

191 GB

80 GB

Exact-dedup?



SantaCoder: Overview

▸ Preparation for a big run: explorations at 1B scale
▸ Data: The Stack
▸ Tokenizer: BPE following GPT-2 recipe; use a digit splitter
▸ Ablations
▹ Multi-query attention and infilling (FIM, Bavarian et al. 2022)
▹ Data filtering
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Shazeer, 2019

Multi-Query Attention
▸ Designed to reduce memory-bandwidth cost to speed up inference



SantaCoder: Model Ablations

▸ Infilling (FIM) and MQA “for cheap”



SantaCoder: Data Filtering Ablations
▸ Remove repos with < 5 stars

- Hurts substantially!

▸ Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

▸ More aggressive near-duplicate filtering
+ Very slight improvements

▸ Remove files with low character-to-token ratios
+ Very slight improvements



SantaCoder: Final Model

▸ 1B parameter, with infilling (FIM) and multi-query attention
▸ 268GB of data: 118B tokens. Java, JavaScript, Python
▸ ~6 days on 96 V100s



We follow the natural distribution and sample data from 86 languages 
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

StarCoder: A Large-Scale Multilingual Model
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StarCoder: Data Selection
▸ Selected 86 languages to be used in training out of the 358 in the Stack 
▸ Included:

▹ Languages with more than 500 MB of data
▹ Languages ranked within the top 50 by one of two commonly used rankings of language 

popularity. 
▸ Excluded: 

▹ languages that are no longer actively supported
▹ configuration languages
▹ D and Swift (human error!)

▸ Limited:
▹ Data formats like JSON and YAML
▹ Long lines
▹ Low alpha-numeric characters
▹ HTML



StarCoder: Data Inspection  
▸ Randomly selected 1000 files for 

each programming language 
extension 

▸ 18 BigCode members verified 300 
extensions
▹ Excluded 36 extensions
▹ Decide whether to keep or 

remove long line filter and 
alpha filter for each extension

Spreadsheet available!

https://docs.google.com/spreadsheets/d/1Lk-pTk_rXI__fCgixr7ZWSi8wR09Zzd2j_G90J80r00/edit?usp=sharing


PII dataset annotations 

▸ Data composition
▹ 12,000 code files 
▹ 7,000 pre-filtered to probably have PII, 5,000 random
▹ 31 programming languages

▸ PII Annotation
▹ 7 entities: Names, Usernames, Emails, IP addresses, keys, passwords, 

and IDs
▹ 1,399 crowd-workers from Toloka



▸ Model
▹ Bidirectional Transformer similar to BERT-base
▹ Same vocabulary as StarCoder
▹ ~125M params
▹ https://huggingface.co/bigcode/starencoder

▸ Pre-training
▹ Follows data mix of StarCoder
▸ Commits and Issues included

▹ Trained for 400B tokens
▸ Masked language modeling + next “sentence” prediction objective

▹ https://github.com/bigcode-project/bigcode-encoder

StarEncoder

https://huggingface.co/bigcode/starencoder
https://github.com/bigcode-project/bigcode-encoder


Named entity recognition (NER) training
● Fine-tune StarEncoder with a linear classification 

tagging layer on 6 PII target classes

Pseudo-labeling
● Take 18 000 files and label them (noisily) with an 

ensemble of two NER models: 113 000 entities

(x7 times increase of labeled entities)

PII Models



Jupyter Notebooks  

Python
Julia
R
Scala
Bash
Java
Q#
C++
MATLAB
Powershell
…

Guesslang

1.4M+

Jupyter - scripts

Jupyter -
notebooks

Markdown + Code + Output

1M+

Jupyter - structured



Jupyter Notebooks



GitHub Data

Issues (discussion threads) Commits and Commit Messages



Recap: What About Data Reuse?

▸ Mueninghoff et al. 
were able to train up 
to 4 epochs on fixed 
data before seeing 
significant 
degradation relative 
to using new data

(Harm)

● Tweet
● Details in blog post

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/


Recap: Scaling Laws

(Harm)

▸ With a fixed compute budget 
(number of GPU days), can 
train a larger model on fewer 
tokens, or a smaller model on 
more tokens

▸ Scaling laws predict (for a 
given pre-training dataset, 
and compute budget), what 
size Transformer and number 
of tokens will produce the 
best loss

● Tweet
● Details in blog post

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/


Chinchilla Optimality Ignores Inference

(Harm)

▸ Using a smaller model than recommended by the Chinchilla scaling 
laws comes at a cost to training compute, but it can be small

● Tweet
● Details in blog post

https://www.harmdevries.com/post/model-size-vs-compute-overhead/

https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/


Flash Attention 

→ up to 4x speedup over standard attention
→ scale sequence length up to 8192 tokens.

[Dao et al. 2022]



StarCoder Models
▸ StarCoderBase
▹ 15.5B parameters, trained on 1T tokens (~3 epochs)
▸ This is much smaller than Chinchilla optimal, but we were 

aiming for inference efficiency
▸Multiple epochs didn’t seem to hurt

▹ ~1 month on 512 80GB A100s
▹ Megatron-LM with BF16 and FlashAttention

▸ StarCoder
▹ Continued training on 35B tokens of Python (two epochs)



Evaluation Harness: Unified framework for efficient code evaluation 

▸ Data parallelism for fast text generation with accelerate

▸ Unified framework for 7+ code benchmarks: HumanEval, MultiPL-E in 18 
programming languages, DS-1000, PaL …

▸ Docker containers for code execution

Official version: https://github.com/bigcode-project/bigcode-evaluation-harness
VLLM fork (may be faster): https://github.com/iNeil77/vllm-code-harness/tree/main 



MultiPL-E 

▸ Translations of the HumanEval
benchmark into other programming 
languages.

▸ Together, StarCoderBase and 
StarCoder outperform OpenAI’s code-
cushman-001 on HumanEval in 12 
languages.

▸ Surprisingly, StarCoder outperforms 
StarCoderBase on 9 languages in 
addition to Python.

MultiPL-E translated HumanEval results



StarCoderBase: Performance Over Training



StarCoderBase: Performance By Data

▸ How correlated is code completion 
performance for a language with the 
amount of data available for a 
language?

▸ Train model for 200B tokens (on all 
languages). Evaluate on all languages, 
getting a dot for each language. 
Observe a strong correlation.

▸ Continue training, evaluate again at 
400B tokens. The correlation remains 
strong, and line shifts upward.



Language Competition?
▸ InCoder saw slight competition between languages at the 1.3B 

param scale: 

▸ But is there competition among languages in these large models?



Scaling Laws for Mixed-Modal Models

Aghajanyan and Yu et al. 2023

▸ In multi-modal settings, modalities compete when models are 
small; can synergize when models are large.



DS-1000: Practical data tasks requiring API use



Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Python return-type prediction 
(InCoder/TypeWriter benchmarks)

TypeScript type inference (TypeWeaver
benchmarks)

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Evaluating Infilling



▸ Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
▸ Demonstrates StarCoder can benefit from information within long files or repositories.
▸ Longer contexts provides noticeable decreases in perplexity.

Testing 8K Window: Perplexity with Long Contexts



- StarcoderBase performs 
better with PAL than with 
CoT

- Outperforms CodeGen-
16B and LLaMA-13B

(Raymond)

Non-Trivial Natural Language Abilities
▸ Surprisingly reasonable performance on some natural language reasoning tasks 
▸ CodeGen < StarCoderBase < LLaMA



Reasoning Tasks in HELM



Multiple levels of data 
attribution, documentation tools!

Am I in The Stack?

Stack: Data Portrait
(stack.dataportraits.org)

StarCoder: Dataset Search 🔍
● Lightweight checks for other demos/plugin!
● We can analyze the data; end users can 

interact
● StarCoder might be one of the most

documented LLMs + dataset combos

Membership Checking and Indexing

https://huggingface.co/spaces/bigcode/in-the-stack
https://stack.dataportraits.org/
https://huggingface.co/spaces/bigcode/search


DeepSeek Coder



DeepSeek Coder

▸ 1.3B, 6.7B, and 33B parameter models

▸ Trained from scratch on 2 Trillion tokens of code from 87 
languages

▸ FIM loss, and 16K context length



DeepSeek Coder: Data

▸ 87% code, 10% code-related English NL, 3% code-unrelated Chinese 
NL

▸ Pre-training: 800GB, 2 Trillion tokens. 
▹ StarCoder filtering and less aggressive deduplication (repo-level)
▹ Also remove code with syntax errors, poor readability, low 

modularity
▹ May have up-sampled Python relative to the natural distribution?
▹ Probably not license-filtered?



DeepSeek Coder: Repo-Level Context

▸ Parse file dependencies and arrange repo files in the context 
window using a topological ordering.

▸ Theoretically can handle 64K tokens, but “empirical 
observations suggest that the model delivers its most reliable 
outputs within a 16K token range”



InCoder 6B
(mixed)

DeepSeek Coder: Data, Data, Data

Codex-12B
(mixed)

StarCoder-15B
(mixed)



DeepSeek Coder: Results
▸ MultiPL-E HumanEval and MBPP

▸ DS-1000



Recap: Scaling laws of transfer

Hernandez et al. 2021



DeepSeek Coder: Effects of Transfer

▸ V-1.5: start with a model trained on lots of NL text (DeepSeek-
LLM), then fine-tune on 2T tokens (70% code, 30% NL)

▸ Instruct: fine-tune on 2B tokens of instructions (details unclear)



DeepSeek Coder: Example from Instruct-33B

https://chat.deepseek.com/coder



What Makes a Model Good?
Data size, model size, data filtering, optimization quality, and competition/synergies among 
training data...

PaLM-Coder

34%
StarCoder

CodeGen-Mono
Codex-12B [Chen et al. 2021]

50% 56%
DSC-33BDSC-6B



Questions?


