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What Makes a Model Good?

Function pass rate on HumanEval Python [Chen et al. 2021] by amount of Python data & model scale:

CodeGen-Mono
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The Stack, SantaCoder, and StarCoder



The Stack: Dataset

GH Archive Raw dataset

query . — git clone 137 M repos
> = > @ 52 B files

102 TB of data

220 M repo
names
selecting file
extensions
near- license V
deduplication filtering
< < @ 69 TB of data
2.9 TB of data 6.4 TB of data

[Kocetkov et al. 2022]



The Stack: Dataset

Raw dataset Permissive

Apache
2.0 BSD-3-Clause
Permissive license distribution of licenses used to filter the dataset:

MIT (67.7%) | Apache-2.0 (19.1%) | BSD-3-Clause (3.9%) | Unlicense (2.0%) |
CCO0-1.0 (1.5%) | BSD-2-Clause (1.2%) | CC-BY-4.0 (1.1%) | CC-BY-3.0 (0.7%) |
0BSD (0.4%) | RSA-MD (0.3%) | WTFPL (0.2%) | MIT-0 (0.2%) | Others (166) (2.2%)

[Kocetkov et al. 2022]



: Dataset

The Stack
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MinHash Near-Deduplication

Files (M)

Perm. + near-dedup

Permissive

All-licenses
Language Size (GB) Files (M) Size (GB) Files (M) Size (GB)

194.79

1633.05 | 3135.95 317.41 | 1450.75

29648.2

Total




The Stack: Python Models

» Possible to approximate Codex-12B performance with permissively licensed
data? Train 350M models on Python

» Deduplication always improves performance
(https://huggingface.co/blog/dedup)

» License filtering hurts, but there’s enough data available to match Chen et al.
2021

Dataset Filtering pass@1 pass@10 pass@100 Python Data
Codex (300M) Exact-dedup? 13.17 20.17  36.27 180 GB
CodeGen (350M) unknown 12.76 23.11 35.19

Python all-license None 13.11 21.77 36.67 740 GB

Near-dedup 17.34 27.64 45.52
Python permissive-license  None 10.99 15.94 27.21 191 GB
Near-dedup 12.89 22.26 36.01 80 GB



SantaCoder: Overview

» Preparation for a big run: explorations at 1B scale

» Data: The Stack

» Tokenizer: BPE following GPT-2 recipe; use a digit splitter

» Ablations
> Multi-query attention and infilling (FIM, Bavarian et al. 2022)
> Data filtering



Multi-Query Attention

» Designed to reduce memory-bandwidth cost to speed up inference

1

Vs

Linear

~

?

Concat

e —————

Shared key, value
projection parameters
across heads

Shazeer, 2019



SantaCoder: Model Ablations

» Infilling (FIM) and MQA “for cheap”

Language Attention FIM HumanEval MBPP
Multi Query Attention v 0.35 0.54
Java Multi Head Attention v 0.36 0.55
Multi Query Attention X 0.37 0.55
Multi Query Attention v 0.33 0.64
JavaScript Multi Head Attention v 0.37 0.67
Multi Query Attention X 0.37 0.65
Multi Query Attention v 0.36 0.67
Python Multi Head Attention v 0.38 0.70
Multi Query Attention X 0.39 0.68

Table 5: Pass @ 100 results for the architecture ablations on HumanEval and MBPP.



SantaCoder: Data Filtering Ablations

» Remove repos with < 5 stars
- Hurts substantially!

» Remove files with low (or very high) comment-to-code ratio
~ Mixed effects

» More aggressive near-duplicate filtering
+ Very slight improvements

» Remove files with low character-to-token ratios
+ Very slight improvements



SantaCoder: Final Model

» 1B parameter, with infilling (FIM) and multi-query attention
» 268GB of data: 118B tokens. Java, JavaScript, Python
» ~6 days on 96 V100s

Left-to-right pass @100

Fill-in-the-middle ex. match

Model Size | Java JavaScript Python | Java JavaScript Python
InCoder 6.7B | 0.36 0.38 0.47 0.49 0.51 0.31
CodeGen-multi 2.7B | 0.42 0.39 0.39 X X X
CodeGen-mono 2.7B X X 0.57 X X X
Codex!2 25B | X X 0.60 X X X
SantaCoder 1.1B | 041 0.47 0.49 0.62 0.60 0.44




StarCoder: A Large-Scale Multilingual Model

We follow the natural distribution and sample data from 86 languages
proportionally to their volume. 800GB total. Lots of natural language (~20%)!

78 other
languages
25%

Java

Commits 11%

4%
Issues
7%
Python
8% Markdown

PHP 200
8% -

JavaScript
8%




StarCoder: Data Selection

Selected 86 languages to be used in training out of the 358 in the Stack
Included:
> Languages with more than 500 MB of data

> Languages ranked within the top 50 by one of two commonly used rankings of language
popularity.

Excluded:
> languages that are no longer actively supported
> configuration languages
> D and Swift (human error!)

Limited:

Data formats like JSON and YAML

Long lines

Low alpha-numeric characters

D
D
D
> HTML



StarCoder: Data Inspection

» Randomly selected 1000 files for

°
h mming | e
eachn progra INg language T N e B m— :

1 o count low_alphanun long_lines_cot non_lexable_count XML_detected Data_detected

L] 62 61 cu cuda 1000 0 4 20

63 60 cuh cuda 1000 1 3 00

eX e n S I O n o 62 dart dart 1000 0 3 170

65 64 1 dockerfile 1 0 0 00

66 66 3 dockerfile 1 0 0 00

67 65 dockerfile dockerfile 334 0 0 10

68 67 mustache dockerfile 1 0 0 00

69 63 dockerfile 1000 0 0 290

7 68 ex elixir 1000 0 14 379 0

4l 69 exs elixir 1000 0 2 57 0

72 70 elm elm 1000 2 10 820

° ° L D 71 el emacsdisp 1000 1 31 109 0

4 IgCode members verirtie e e —

" 73 erl erlang 1000 6 3 350

76 77 escript erlang 71 0 1 60

e ” 74 hrl erlang 1000 2 8 131

extensions e e

. 75 yr erlang 57 0 0 60

Visual inspection PLs
View Insert

o e & F 100%
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> Excluded 36 extensions
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Name
Evgenii
Evgenii
Evgenii
Evgenii
Evgenii
Marco Zocca
Evgenii
Evgenii
Raymond
Raymond
Raymond
Marco Zocca
Jason Stillerman
Evgenii
Evgenii
Evgenii
Evgenii
Evgenii

Spreadsheet available!

> Decide whether to keep or
remove long line filter and
alpha filter for each extension

o B MmY B = ~

K L
Overall quality Alphanum filter
LGT™M
LGTM
LGTM

LGTM, only one file
LGTM, only one file

LGTM LGTM
LGTM, only one file

LGTM

LGTM LGTM
LGT™M LGTM
LGTM LGTM
LGTM

LG, one bash script got LGTM
LGT™M

LGTM, ~10% not erlang
LGTM

This is not Erlang, rather some lex-like langu:
This is not Erlang, rather some yacc-like lang


https://docs.google.com/spreadsheets/d/1Lk-pTk_rXI__fCgixr7ZWSi8wR09Zzd2j_G90J80r00/edit?usp=sharing

Pll dataset annotations

» Data composition
> 12,000 code files
> 7,000 pre-filtered to probably have PIl, 5,000 random

> 31 programming languages

» Pll Annotation

> 7 entities: Names, Usernames, Emails, IP addresses, keys, passwords,
and IDs

> 1,399 crowd-workers from Toloka



StarEncoder

» Model
> Bidirectional Transformer similar to BERT-base
> Same vocabulary as StarCoder
b ~125M params
> https://huggingface.co/bigcode/starencoder

» Pre-training
> Follows data mix of StarCoder
» Commits and Issues included
> Trained for 400B tokens
» Masked language modeling + next “sentence” prediction objective
> https://github.com/bigcode-project/bigcode-encoder



https://huggingface.co/bigcode/starencoder
https://github.com/bigcode-project/bigcode-encoder

PIl Models

Named entity recognition (NER) training

Fine-tune StarEncoder with a linear classification

tagging layer on 6 Pl target classes

Entity type Train Test

EMAIL 4721 1742
NAME 3847 1298
IP_ ADDRESS 1941 521
USERNAME 1320 346
PASSWORD 390 148

. KEY 171 118
Pseudo-labeling

Take 18 000 files and label them (noisily) with an
ensemble of two NER models: 113 000 entities
(x7 times increase of labeled entities)
Method Email address IP address Key

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
Regex 96.20% 97.47%  96.83% 71.29% 87.71% 78.65% 3.62% 49.15% 6.74%
NER 94.01% 98.10% 96.01%  88.95%  94.43% 91.61% 60.37% 53.38%  56.66%

98.94% 98.15% 90.10% 93.86% 91.94% 62.38% 80.81% 70.41%

+ pseudo labels 97.73%




Jupyter Notebooks

Jupyter -

notebooks ‘
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Markdown  Code
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Jupyter - structured
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_
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Jupyter - scripts



Jupyter Notebooks

Model input:

<jupyter_text>Let’s test our ‘is_prime‘ function:<jupyter_code>
print(is_prime(3))

print(is_prime(4))

print(is_prime(29))

print(is_prime(33))<jupyter_output>

Model output:

True
False
True
False

Model input:

<jupyter_code>numbers = [1, 9, 8, 3, 27]
print([n*2 for n in numbers])<jupyter_output>

Model output:

[2, 18, 16, 6, 54]




GitHub Data

Issues (discussion threads)

<issue_start>title + USERID: comment
<issue_comment>USERID: comment ...
<eos>

Model input:

Commits and Commit Messages

Model input:

<commit_before>def fibonacci(n):<commit_msg>add type hints to
function<commit_after>def

Model output:

def fibonacci(n: int) -> list[int]:

<issue_start><issue_comment>username_@: I am trying to train a
text classifier based on BERT using ‘transformers‘ but I
get the error: ‘RuntimeError: CUDA Out of memory‘.<
issue_comment>

Model output:

username_1: Hi,

This is not an issue with transformers. You should look at your
GPU usage and see if you can free up some space before
training starts (or use smaller batch sizes).




Recap: What About Data Reuse?

» Mueninghoff et al.
were able to train up
to 4 epochs on fixed
data before seeing
significant
degradation relative
to using new data

Final test loss
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https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Recap: Scaling Laws

» With a fixed compute budget T T S ——
(number of GPU days), can w
train a larger model on fewer I Gorbar (2808] 1e25 FLOPs
GPT-3 (1703)*
tokens, or a smaller model on 1008 e34 ELOPS

Chinchilla (70B)

more tokens
1le23 FLOPs

» Scaling laws predict (for a s 1 IBRA TR
given pre-training dataset, - le21 FLOPs
and compute budget), what . 0 FLOPe
size Transformer and number
of tokens will produce the
best |OSS Loom — Our estimated compute-optimal scaling

10B 100B 1T 10T
Tokens


https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Chinchilla Optimality Ignores Inference

» Using a smaller model than recommended by the Chinchilla scaling
laws comes at a cost to training compute, but it can be small

800 i
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g @ SantaCoder
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+~ LLaMA-7B
1007 Chinchilla o
B — ‘
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Fraction of optimal model size k_N

https://www.harmdevries.com/post/model-size-vs-compute-overhead/


https://twitter.com/karpathy/status/1654898539661754368
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Flash Attention

Outer Loop R
K:dxN .
Attention on GPT-2
Copy Block to SRAM
Q:Nxd . Outer Loop N V:NXd 15 ;I Matmul
= ST e e )
GPU . o
SRAM: 19 TB/s (20 MB) R | Dropout
] (e T =
HBM: 1.5 TB/ S i £10-
: 1. s (40 GB) = O | Copy o é10
= Gl on SRAM | 5 . §
ETT NI TTa DRAM: 12.8 GB/s ¢ i [ 2 S|F 5. Fused
(CPU DRAM) (>1TB) | 1K) Mask  Kernel
| L : —
: . v : v Matmul
Memory Hierarchy with ke Outptitto ﬁBKA 0 - ] atmu
Bandwidth & Memory Size sm(QKTV: N xd PyTorch FlashAttention
Inner Loop :

FlashAttention

— up to 4x speedup over standard attention
— scale sequence length up to 8192 tokens.

[Dao et al. 2022]



StarCoder Models

» StarCoderBase
> 15.5B parameters, trained on 1T tokens (~3 epochs)

» This is much smaller than Chinchilla optimal, but we were
aiming for inference efficiency

» Multiple epochs didn’t seem to hurt
> ~1 month on 512 80GB A100s
> Megatron-LM with BF16 and FlashAttention
» StarCoder
> Continued training on 35B tokens of Python (two epochs)



Evaluation Harness: unified framework for efficient code evaluation

» Data parallelism for fast text generation with accelerate

» Unified framework for 7+ code benchmarks: HumanEval, MultiPL-E in 18
programming languages, DS-1000, PalL ...

» Docker containers for code execution

‘ Official version: https://github.com/bigcode-project/bigcode-evaluation-harness
VLLM fork (may be faster): https://github.com/iNeil77/vlim-code-harness/tree/main



MultiPL-E

» Translations of the HumanEval
benchmark into other programming
languages.

» Together, StarCoderBase and
StarCoder outperform OpenAl’s code-
cushman-001 on HumanEval in 12
languages.

» Surprisingly, StarCoder outperforms
StarCoderBase on 9 languages in
addition to Python.

Language code-cushman-001 StarCoder StarCoderBase
cpp 30.59 31.55 30.56
c-sharp 22.06 21.01 20.56
d 6.73 13.57 10.01
go 19.68 17.61 21.47
java 31.90 30.22 28.53
julia 1.54 23.02 21.09
javascript 31.27 30.79 31.70
lua 26.24 23.89 26.61
php 28.94 26.08 26.75
perl 19.29 17.34 16.32
python 30.71 33.57 30.35
r 10.99 15.50 10.18
ruby 28.63 1.24 17.25
racket 7.05 0.07 11.77
rust 25.22 21.84 24.46
scala 27.62 27.61 28.79
bash 11.74 10.46 11.02
swift 22.12 22.74 16.74
typescript 31.26 32.29 32.15

MultiPL-E translated HumanEval results



StarCoderBase: Performance Over Training

200B 400B 600B 800B  1000B
Training tokens



StarCoderBase: Performance By Data

» How correlated is code completion
performance for a language with the
amount of data available for a
language?

» Train model for 200B tokens (on all
languages). Evaluate on all languages,
getting a dot for each language.
Observe a strong correlation.

» Continue training, evaluate again at
400B tokens. The correlation remains
strong, and line shifts upward.

Pass@1 (%)

35

30

25 1

20 -

15 1

10

10t 100 10t 102
Size after dedup, GB



Language Competition?

» InCoder saw slight competition between languages at the 1.3B
param scale:

4 Size Ob; Training Data Train Train HumanEval = MBPP
B) ). Data Size Tokens Compute Pass@1 Pass@1
1) 6.7 CM multilang + SO 204 GB 52B 3.0Z 15 19.4
2) 1.3 CM  multilang + SO 204 GB 52 B 0.6 Z 8 10.9
3) 13 LM  multi lang + SO 204 GB 52B 0.6Z 6 8.9
4) 1.3 LM Python + SO 104 GB 25B 037 9 9.8
5 1.3 LM Python 49 GB 11B 0.1Z 5 6.1
6) 23 LM  multi lang + SO 204 GB 52B 1.1Z 9 12.7

» But is there competition among languages in these large models?



Scaling Laws for Mixed-Modal Models

» In multi-modal settings, modalities compete when models are
small; can synergize when models are large.

Speech|Text Competition

1.7 Legend
350M

16 — 2.7B

1.5 30B

) x  Scaling Law Predictions
o141\ T Competition Barrier
;§
™13
o
.

1.1

1.0

0.9

0 10000 20000 30000 40000
Number of Updates

Figure 5: We plot 0'5*(%(5\}12’;2;5 (Tj\efxiﬁ’)e cch)) throughout the training process. If this ratio is below
1, we have broken through the competition barrier. Additionally, we add the predictions for the final

ratio as predicted from our scaling laws.

Aghajanyan and Yu et al. 2023



DS-1000: Practical data tasks requiring APl use

Here is a sample dataframe: Broblem <éode> Code Context
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) import pandas as pd
I'd like to add inverses of each existing column to the dataframe and name d*/: =dpd-DataFPamE({"A"= [1, 2, 3],"B": [4, 5, 6]})
S . . . . . </code>
them based on existing column names with a prefix, e.g. inv_A is an inverse of e Gl
column A and so on. RS
The resulting dataframe should look like so: [insert]
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1, </code>
1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]}) ENDdSOLUTION
Obviously there are redundant methods like doing this in a loop, but there ;ﬁ?nizresult)
should exist much more pythonic ways of doing it ... [omitted for brevity] </code>
Reference Solution
[ result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_")) ]
20 &
» » s <\°
A© g > << A 0
W > O A N N C
Format Model W A *» 22 & ‘5\,@‘0 & Overall
Number of problems: 155 220 291 68 106 115 45 1,000

Completion InCoder-6B 28.3 4.4 N | 4.4 2.8 2,8 3.8 7.4

Completion CodeGen-16B-Mono 31.7 10.9 34 7.0 9.0 10.8 19.2 11.7

Completion code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

Completion StarCoderBase 47.0 27.1 10.1 19.5 21.7 27.0 20.5 23.8

Completion StarCoder 51.7 29.7 114 214 20.2 29.5 24.5 26.0



Evaluating Infilling

Model Java JavaScript Python
InCoder-6B  0.49 0.51 0.31
SantaCoder 0.62 0.60 0.44
StarCoder 0.73 0.74 0.62

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Packages type check
v Total %0
InCoder 30 128 23.4

StarCoderBase 49 128 38.3

TypeScript type inference (TypeWeaver
benchmarks)

Model BLEU
InCoder-6B 18.27
SantaCoder 19.74
StarCoderBase  21.38
StarCoder 21.99

Python docstring generation
(CodeXGLUE / InCoder benchmark)

Model Non-None F1 All F1
InCoder-6B 59.1 46.8
SantaCoder 66.9 78.5
StarCoderBase 77.4 86.6
StarCoder A | 86.4

Python return-type prediction
(InCoder/TypeWriter benchmarks)



Testing 8K Window: Perplexity with Long Contexts

Window Size Language

cpp  c-sharp C go java javascript php r ruby  rust
2K tokens 2.01 1.90 1.71 1.35 1.65 1.98 1.73 1.72 216 1.84
8K tokens 1.79 1.66 1.61 1.21 1.54 1.68 143 148 2.02 1.65

» Derived test data from GPL repositories on GitHub. GPL was excluded from training data.
» Demonstrates StarCoder can benefit from information within long files or repositories.

» Longer contexts provides noticeable decreases in perplexity.



Non-Trivial Natural Language Abilities

» Surprisingly reasonable performance on some natural language reasoning tasks
» CodeGen < StarCoderBase < LLaMA

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Model Size GSMS8K CoT +majieie0 |GSMSK PAL-I_:ma j1@40
StarCoderBase 15.5B 8.4 — 21.5 31.2
CodeGen-Multi 16B 3.18 — 8.6 15.2
CodeGen-Mono 16B 2.6 — 13.1 22.4
7B 11.0 18.1 10.5 16.8
13B 17.8 29.3 16.9 28.5
LLaMA 33B 35.6 53.1 38.7 50.3
65B 50.9 69.7 — —




Reasoning Tasks in HELM

Synth.

Synth.

Model Size A?c PN Reason. Reason. bAbI Dyck GSMSK MATH 1}‘&%‘ LSAT Sﬁ;[g:)lr t
(AS) (NL)

code-davinci-002 175B 54.0 68.4 68.6 80.5 56.8 41.0 43.3 — —
text-davinci-003 175B 50.2 73.4 653 75.1 50.6 39.0 44.9 23.3 62.2
Luminous Supreme  70B 31.2 — 504 729 11.2 14.9 5.7 21.2 53.0
StarCoderBase 15.5B v 44.0 21.0 504 854 8.4 15.1 7.0 19.0 53.2
Cohere Command 52.4B 24.3 24.5 473 42.1 13.8 13.3 7.5 22.9 60.6
Beta

J1-Jumbo vl 178B 26.3 17.4 543 445 54 8.9 3.3 23.2 48.4
J1-Grande v2 beta 17B 28.6 13.9 470 61.7 9.6 12.7 6.8 19.1 56.2
code-cushman-001 12B 34.1 16.4 48.1 45.1 4.9 9.9 7.2 — —
OPT 175B v 22.5 24.8 50.7 494 4.0 6.5 2.6 22.0 53.2
GPT-NeoX 20B v 20.4 16.7 46.8 74.7 53 14.1 7.1 19.1 51.5
BLOOM 176B v 30.4 19.7 447 54.5 9.5 4.3 5.5 20.9 54.3
GLM 130B v 25.2 25.4 443 54.9 6.1 0 5.9 19.3 45.1
UL2 20B v 20.5 21.7 50.1 14.0 24 0 0 20.7 50.6
OPT 66B v 19.3 21.3 40.8 47.1 1.8 4.8 2.9 17.5 52.7
YalLM 100B v 5.6 6.1 346 63.3 0 0 0 2.3 48.4
T5 11B v 19.6 10.1 412 34.7 2.3 0 0 15.9 55.8




Membership Checking and Indexing

attribution, documentation tOOlS! Source: chilin0525/model-layer-profiling/test.py | Language:

Multiple levels of data

python | License: MIT

Am | in The Stack?

from transformers import AutoTokenizer, AutoModel
import torch

StaCk Data Portra|t import torch.cuda.profiler as profiler
] import nvidia_dlprof_pytorch_nvtx
(stack.dataportraits.org)

Sta rCOder: Dataset Sea rCh q # call the magic code generation model

from transformers import AutoTokeniz|

tokenizer = AutoTokenizer.from_pretrained("gpt2")

Lightweight CheCkS for Other demOS/plugin! inputs = tokenizer("Hello world!", return_tensors="pt")
We can analyze the data; end users can

Matching Text

L]
I n t e ra Ct Found spans are in grey. The longest span is in blue. Hovering over a character highlights the longest
span that includes that character (there may be overlapping shorter spans). Clicking shows the

StarCOder might be One Of the most component substrings below.

docu mentEd LLMS + dataset Combos from transformers import AutoTokeniz

tokenizer = AutoTokenizer.from_pretrained("gpt2")

inputs = tokenizer("Hello world!", return_tensors="pt")

Substring Hashes A



https://huggingface.co/spaces/bigcode/in-the-stack
https://stack.dataportraits.org/
https://huggingface.co/spaces/bigcode/search

DeepSeek Coder



DeepSeek Coder

» 1.3B, 6.7B, and 33B parameter models

» Trained from scratch on 2 Trillion tokens of code from 87
languages

» FIM loss, and 16K context length



DeepSeek Coder: Data

» 87% code, 10% code-related English NL, 3% code-unrelated Chinese
NL

» Pre-training: 800GB, 2 Trillion tokens.
> StarCoder filtering and less aggressive deduplication (repo-level)

> Also remove code with syntax errors, poor readability, low
modularity

> May have up-sampled Python relative to the natural distribution?
> Probably not license-filtered?



DeepSeek Coder: Repo-Level Context

» Parse file dependencies and arrange repo files in the context
window using a topological ordering.

» Theoretically can handle 64K tokens, but “empirical
observations suggest that the model delivers its most reliable
outputs within a 16K token range”



DeepSeek Coder: Data, Data, Data
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DeepSeek Coder: Results

» MultiPL-E HumanEval and MBPP

Model Size | Python | C++ | Java | PHP ‘ TS | C# | Bash | JS | Avg | MBPP
Multilingual Base Models

code-cushman-001 12B | 33.5% | 31.9% | 30.6% | 28.9% | 31.3% | 22.1% | 11.7% - - -

CodeGeeX2 6B | 36.0% | 292% | 25.9% | 23.6% | 20.8% | 29.7% | 6.3% | 24.8% | 24.5% | 36.2%
StarCoderBase 16B | 31.7% | 31.1% | 28.5% | 25.4% | 34.0% | 34.8% | 89% | 29.8% | 28.0% | 42.8%
CodeLlama 7B | 31.7% | 29.8% | 34.2% | 23.6% | 36.5% | 36.7% | 12.0% | 29.2% | 29.2% | 38.6%
CodeLlama 13B | 36.0% | 37.9% | 38.0% | 34.2% | 45.2% | 43.0% | 16.5% | 32.3% | 35.4% | 48.4%
CodeLlama 34B | 48.2% | 44.7% | 44.9% | 41.0% | 42.1% | 48.7% | 15.8% | 42.2% | 41.0% | 55.2%
DeepSeek-Coder-Base 1.3B | 34.8% | 31.1% | 32.3% | 24.2% | 28.9% | 36.7% | 10.1% | 28.6% | 28.3% | 46.2%
DeepSeek-Coder-Base 6.7B | 49.4% | 50.3% | 43.0% | 38.5% | 49.7% | 50.0% | 28.5% | 48.4% | 44.7% | 60.6%
DeepSeek-Coder-Base 33B | 56.1% | 58.4% | 51.9% | 44.1% | 52.8% | 51.3% | 32.3% | 55.3% | 50.3% | 66.0%

» DS-1000
Model Size | Matplotlib | Numpy | Pandas | Pytorch | Scipy | Scikit-Learn | Tensorflow | Avg
CodeGeeX2 6B 38.7% 26.8% 14.4% 11.8% | 19.8% 27.0% 17.8% 22.9%
StarCoder-Base 16B 43.2% 29.1% 11.0% 20.6% | 23.6% 32.2% 15.6% 24.6%
CodeLlama-Base 7B 41.9% 24.6% 14.8% 16.2% | 18.9% 17.4% 17.8% 22.1%
CodeLlama-Base 13B 46.5% 28.6% 18.2% 19.1% | 18.9% 27.8% 33.3% 26.8%
CodeLlama-Base 34B 50.3% 42.7% 23.0% 25.0% | 28.3% 33.9% 40.0% 34.3%
DeepSeek-Coder-Base 1.3B 32.3% 21.4% 9.3% 8.8% 8.5% 16.5% 8.9% 16.2%
DeepSeek-Coder-Base 6.7B 48.4% 35.5% | 20.6% | 19.1% | 22.6% 38.3% 24.4% 30.5%
DeepSeek-Coder-Base  33B 56.1% 49.6% | 25.8% | 36.8% | 36.8% 40.0% 46.7% 40.2%




Recap: Scaling laws of transfer
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DeepSeek Coder: Effects of Transfer

» V-1.5: start with a model trained on lots of NL text (DeepSeek-
LLM), then fine-tune on 2T tokens (70% code, 30% NL)

» Instruct: fine-tune on 2B tokens of instructions (details unclear)

Programming  Math Reasoning Natural Language
Models Size HumanEval MBPP GSM8K MATH MMLU BBH HellaSwag WinoG ARC-C
DeepSeek-Coder-Base 6.7B  44.7%  60.6% 432% 192% 36.6% 44.3% 53.8%  57.1% 32.5%

DeepSeek-Coder-Base-v1.5 6.9B 43.2% 60.4% 624% 24.7% 49.1% 552%  69.9% 63.8% 47.2%

DeepSeek-Coder-Instruct 6.7B  66.1% 654% 62.8% 28.6% 372% 469% 55.0%  57.6% 37.4%
DeepSeek-Coder-Instruct-vl.5 6.9B  64.1% 64.6% 72.6% 341% 49.5% 53.3% 722%  63.4% 48.1%




DeepSeek Coder: Example from Instruct-33B

CODE

Q1: Write a game snake using pygame

Sure, here is a simple implementation of the classic Snake
game using Pygame. This code will create a window with a
snake that can be controlled using the arrow keys. The snake
will grow in length each time it eats the food. The game will
end if the snake hits the edge of the window or its own tail.

**python
import pygame
import random

running = True
‘While running:

screen.fill(BLACK)
snake.draw()
food.draw()

pygame.display.flip()
clock.tick(SPEED)

pygame.quit()

This code sets up a basic game loop where the snake moves in
response to key presses, and the game ends if the snake hits the
edge of the window or its own tail. The snake grows in length
each time it eats the food. The game continues until the player
closes the window.

Snake Game

Run Code

CODE

Q2: Add a scoring system in the top left corner

To add a scoring system to the top left corner of the game
window, you can create a function to display the score and
increment it each time the snake eats the food. Here's how you
can modify the code to include a scoring system:

e

python

running = True
While running:

screen.fill(BLACK)
snake.draw()
food.draw()
display_score(score) #
pygame.display.flip()

clock.tick(SPEED)
pygame.quit()

In this updated code, we've added a “score’ variable to keep
track of the player's score, which is incremented each time the
snake eats the food. The “display_score® function is used to
render the score text and display it in the top left corner of the
window. The “display_score’ function is called after the snake
has moved and the screen has been filled with the black color,
but before the “pygame.display.flip()® call, so that the score is
drawn on top of everything else.

° Snake Game

Score: 7

Run Code I-

https://chat.deepseek.com/coder



What Makes a Model Good?

Data size, model size, data filtering, optimization quality, and competition/synergies among
training data...
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Questions?



